Beata R Godlewska

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5254669/publications.pdf

Version: 2024-02-01

32 papers 1,146 citations

430874 18 h-index 434195 31 g-index

34 all docs

34 docs citations

times ranked

34

2142 citing authors

#	Article	IF	Citations
1	Brain aging in major depressive disorder: results from the ENIGMA major depressive disorder working group. Molecular Psychiatry, 2021, 26, 5124-5139.	7.9	136
2	How Cannabis Causes Paranoia: Using the Intravenous Administration of â^† 9 -Tetrahydrocannabinol (THC) to Identify Key Cognitive Mechanisms Leading to Paranoia. Schizophrenia Bulletin, 2015, 41, 391-399.	4.3	101
3	Measuring Disturbance of the Endocannabinoid System in Psychosis. JAMA Psychiatry, 2019, 76, 914.	11.0	82
4	Neurochemistry of major depression: a study using magnetic resonance spectroscopy. Psychopharmacology, 2015, 232, 501-507.	3.1	80
5	Predicting Treatment Response in Depression: The Role of Anterior Cingulate Cortex. International Journal of Neuropsychopharmacology, 2018, 21, 988-996.	2.1	70
6	Effects of the potential lithium-mimetic, ebselen, on impulsivity and emotional processing. Psychopharmacology, 2016, 233, 2655-2661.	3.1	67
7	Cortical glutathione levels in young people with bipolar disorder: a pilot study using magnetic resonance spectroscopy. Psychopharmacology, 2014, 231, 327-332.	3.1	65
8	Cognitive neuropsychological theory of antidepressant action: a modern-day approach to depression and its treatment. Psychopharmacology, 2021, 238, 1265-1278.	3.1	63
9	Fronto-limbic effective connectivity as possible predictor of antidepressant response to SSRI administration. European Neuropsychopharmacology, 2016, 26, 2000-2010.	0.7	59
10	Effects of the potential lithium-mimetic, ebselen, on brain neurochemistry: a magnetic resonance spectroscopy study at 7 tesla. Psychopharmacology, 2016, 233, 1097-1104.	3.1	49
11	A phase 2a randomised, double-blind, placebo-controlled, parallel-group, add-on clinical trial of ebselen (SPI-1005) as a novel treatment for mania or hypomania. Psychopharmacology, 2020, 237, 3773-3782.	3.1	41
12	Brain glutamate in medication-free depressed patients: a proton MRS study at 7 Tesla. Psychological Medicine, 2018, 48, 1731-1737.	4.5	39
13	Ultra-High-Field Magnetic Resonance Spectroscopy in Psychiatry. Frontiers in Psychiatry, 2017, 8, 123.	2.6	33
14	Brain structural correlates of insomnia severity in 1053 individuals with major depressive disorder: results from the ENIGMA MDD Working Group. Translational Psychiatry, 2020, 10, 425.	4.8	31
15	Effects of typhoid vaccine on inflammation and sleep in healthy participants: a double-blind, placebo-controlled, crossover study. Psychopharmacology, 2016, 233, 3429-3435.	3.1	28
16	Translating the promise of 5HT ₄ receptor agonists for the treatment of depression. Psychological Medicine, 2021, 51, 1111-1120.	4.5	26
17	Brain glutamate in anorexia nervosa: a magnetic resonance spectroscopy case control study at 7 Tesla. Psychopharmacology, 2017, 234, 421-426.	3.1	23
18	Stress, inflammation and hippocampal subfields in depression: A 7 Tesla MRI Study. Translational Psychiatry, 2020, 10, 78.	4.8	21

#	Article	IF	CITATIONS
19	The algorithm for Alzheimer risk assessment based on APOE promoter polymorphisms. Alzheimer's Research and Therapy, 2016, 8, 19.	6.2	17
20	Resting state functional connectivity patterns as biomarkers of treatment response to escitalopram in patients with major depressive disorder. Psychopharmacology, 2022, 239, 3447-3460.	3.1	17
21	Brain glutamate concentration in men with early psychosis: a magnetic resonance spectroscopy case–control study at 7 T. Translational Psychiatry, 2021, 11, 367.	4.8	16
22	Effect of short-term escitalopram treatment on neural activation during emotional processing. Journal of Psychopharmacology, 2016, 30, 33-39.	4.0	14
23	Functional Connectivity between Task-Positive Networks and the Left Precuneus as a Biomarker of Response to Lamotrigine in Bipolar Depression: A Pilot Study. Pharmaceuticals, 2021, 14, 534.	3.8	11
24	Cognitive neuropsychological theory: Reconciliation of psychological and biological approaches for depression., 2019, 197, 38-51.		9
25	Short-term escitalopram treatment and hippocampal volume. Psychopharmacology, 2014, 231, 4579-4581.	3.1	7
26	Altered hippocampal gene expression and structure in transgenic mice overexpressing neuregulin 1 (Nrg1) type I. Translational Psychiatry, 2018, 8, 229.	4.8	7
27	Neuroimaging as a Tool for Individualized Treatment Choice in Depression: the Past, the Present and the Future. Current Behavioral Neuroscience Reports, 2020, 7, 32-39.	1.3	7
28	Changes in brain Glx in depressed bipolar patients treated with lamotrigine: A proton MRS study. Journal of Affective Disorders, 2019, 246, 418-421.	4.1	6
29	The Potential Use of Ebselen in Treatment-Resistant Depression. Pharmaceuticals, 2022, 15, 485.	3.8	6
30	Effects of escitalopram therapy on functional brain controllability in major depressive disorder. Journal of Affective Disorders, 2022, 310, 68-74.	4.1	6
31	Neurochemical abnormalities in chronic fatigue syndrome: a pilot magnetic resonance spectroscopy study at 7 Tesla. Psychopharmacology, 2022, 239, 163-171.	3.1	5
32	Effective connectivity between resting-state networks in depression. Journal of Affective Disorders, 2022, 307, 79-86.	4.1	3