Jeongwu Lee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5254522/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Tumor stem cells derived from glioblastomas cultured in bFGF and EGF more closely mirror the phenotype and genotype of primary tumors than do serum-cultured cell lines. Cancer Cell, 2006, 9, 391-403.	16.8	2,056
2	Phosphorylation of EZH2 Activates STAT3 Signaling via STAT3 Methylation and Promotes Tumorigenicity of Glioblastoma Stem-like Cells. Cancer Cell, 2013, 23, 839-852.	16.8	665
3	SSEA-1 Is an Enrichment Marker for Tumor-Initiating Cells in Human Glioblastoma. Cell Stem Cell, 2009, 4, 440-452.	11.1	598
4	Epigenetic-Mediated Dysfunction of the Bone Morphogenetic Protein Pathway Inhibits Differentiation of Glioblastoma-Initiating Cells. Cancer Cell, 2008, 13, 69-80.	16.8	415
5	Spatiotemporal Evolution of the Primary Clioblastoma Genome. Cancer Cell, 2015, 28, 318-328.	16.8	242
6	WNT signaling in glioblastoma and therapeutic opportunities. Laboratory Investigation, 2016, 96, 137-150.	3.7	200
7	EZH2 Protects Glioma Stem Cells from Radiation-Induced Cell Death in a MELK/FOXM1-Dependent Manner. Stem Cell Reports, 2015, 4, 226-238.	4.8	159
8	Genome-wide CRISPR-Cas9 Screens Reveal Loss of Redundancy between PKMYT1 and WEE1 in Glioblastoma Stem-like Cells. Cell Reports, 2015, 13, 2425-2439.	6.4	146
9	Pharmacogenomic landscape of patient-derived tumor cells informs precision oncology therapy. Nature Genetics, 2018, 50, 1399-1411.	21.4	145
10	FoxM1 Promotes Stemness and Radio-Resistance of Glioblastoma by Regulating the Master Stem Cell Regulator Sox2. PLoS ONE, 2015, 10, e0137703.	2.5	89
11	ARS2/MAGL signaling in glioblastoma stem cells promotes self-renewal and M2-like polarization of tumor-associated macrophages. Nature Communications, 2020, 11, 2978.	12.8	78
12	Combined CDK4/6 and mTOR Inhibition Is Synergistic against Glioblastoma via Multiple Mechanisms. Clinical Cancer Research, 2017, 23, 6958-6968.	7.0	74
13	Transcriptional regulatory networks of tumor-associated macrophages that drive malignancy in mesenchymal glioblastoma. Genome Biology, 2020, 21, 216.	8.8	73
14	MET: roles in epithelial-mesenchymal transition and cancer stemness. Annals of Translational Medicine, 2017, 5, 5-5.	1.7	69
15	Cellular and genetic characterization of human adult bone marrow-derived neural stem-like cells: a potential antiglioma cellular vector. Cancer Research, 2003, 63, 8877-89.	0.9	69
16	Transglutaminase 2 Inhibition Reverses Mesenchymal Transdifferentiation of Glioma Stem Cells by Regulating C/EBPβ Signaling. Cancer Research, 2017, 77, 4973-4984.	0.9	68
17	Antitumor Activity and Prolonged Expression from a TRAIL-Expressing Adenoviral Vector. Neoplasia, 2002, 4, 312-323.	5.3	65
18	Pigment Epithelium-Derived Factor (PEDF) Expression Induced by EGFRvIII Promotes Self-renewal and Tumor Progression of Glioma Stem Cells. PLoS Biology, 2015, 13, e1002152.	5.6	56

Jeongwu Lee

#	Article	IF	CITATIONS
19	Targeting the epithelial to mesenchymal transition in glioblastoma: the emerging role of MET signaling. OncoTargets and Therapy, 2014, 7, 1933.	2.0	53
20	Targeting the mesenchymal subtype in glioblastoma and other cancers via inhibition of diacylglycerol kinase alpha. Neuro-Oncology, 2018, 20, 192-202.	1.2	52
21	Repurposing antipsychotics as glioblastoma therapeutics: Potentials and challenges. Oncology Letters, 2016, 11, 1281-1286.	1.8	50
22	Combined c-Met/Trk Inhibition Overcomes Resistance to CDK4/6 Inhibitors in Glioblastoma. Cancer Research, 2018, 78, 4360-4369.	0.9	46
23	CDK4/6 inhibition is more active against the glioblastoma proneural subtype. Oncotarget, 2017, 8, 55319-55331.	1.8	39
24	Statins affect human glioblastoma and other cancers through TGF-β inhibition. Oncotarget, 2019, 10, 1716-1728.	1.8	30
25	Secretome analysis of patient-derived GBM tumor spheres identifies midkine as a potent therapeutic target. Experimental and Molecular Medicine, 2019, 51, 1-11.	7.7	28
26	PIP4K2A as a negative regulator of PI3K in PTEN <i>-</i> deficient glioblastoma. Journal of Experimental Medicine, 2019, 216, 1120-1134.	8.5	27
27	<i>In vivo</i> RNAi screen identifies NLK as a negative regulator of mesenchymal activity in glioblastoma. Oncotarget, 2015, 6, 20145-20159.	1.8	23
28	Talin1 targeting potentiates anti-angiogenic therapy by attenuating invasion and stem-like features of glioblastoma multiforme. Oncotarget, 2015, 6, 27239-27251.	1.8	23
29	Anti-SEMA3A Antibody: A Novel Therapeutic Agent to Suppress Glioblastoma Tumor Growth. Cancer Research and Treatment, 2018, 50, 1009-1022.	3.0	21
30	Modulation of Nogo receptor 1 expression orchestrates myelin-associated infiltration of glioblastoma. Brain, 2021, 144, 636-654.	7.6	16
31	CADD-57. THE EFFICACY OF THERAPY WITH ABT-414, AN EGFR-TARGETING ADC, IS POTENTIALLY ALTERED BY HETEROZYGOUS DELETION OF THE ENDOCYTIC TRAFFICKING REGULATOR RBSN. Neuro-Oncology, 2018, 20, vi283-vi284.	1.2	0