
F Nina Papavasiliou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5253933/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Functions and consequences of AID/APOBEC-mediated DNA and RNA deamination. Nature Reviews Genetics, 2022, 23, 505-518.	16.3	103
2	Functional insights from a surface antigen mRNA-bound proteome. ELife, 2021, 10, .	6.0	28
3	SARS-CoV-2 variant evolution in the United States: High accumulation of viral mutations over time likely through serial Founder Events and mutational bursts. PLoS ONE, 2021, 16, e0255169.	2.5	28
4	Harnessing self-labeling enzymes for selective and concurrent A-to-I and C-to-U RNA base editing. Nucleic Acids Research, 2021, 49, e95-e95.	14.5	11
5	Structure of trypanosome coat protein VSGsur and function in suramin resistance. Nature Microbiology, 2021, 6, 392-400.	13.3	20
6	Nanobody-mediated macromolecular crowding induces membrane fission and remodeling in the African trypanosome. Cell Reports, 2021, 37, 109923.	6.4	11
7	C-to-U RNA Editing: From Computational Detection to Experimental Validation. Methods in Molecular Biology, 2021, 2181, 51-67.	0.9	4
8	Inducible Germline IgMs Bridge Trypanosome Lytic Factor Assembly and Parasite Recognition. Cell Host and Microbe, 2020, 28, 79-88.e4.	11.0	18
9	MTA2/NuRD Regulates B Cell Development and Cooperates with OCA-B in Controlling the Pre-B to Immature B Cell Transition. Cell Reports, 2019, 28, 472-485.e5.	6.4	28
10	Mechanistic Similarities between Antigenic Variation and Antibody Diversification during Trypanosoma brucei Infection. Trends in Parasitology, 2019, 35, 302-315.	3.3	20
11	RNA Editors, Cofactors, and mRNA Targets: An Overview of the C-to-U RNA Editing Machinery and Its Implication in Human Disease. Genes, 2019, 10, 13.	2.4	47
12	ADAR1 Drives Disease Progression in Multiple Myeloma By Acting Both As an RNA Editor of Specific Transcripts and As a DNA Mutator of Their Cognate Genes. Blood, 2019, 134, 3092-3092.	1.4	0
13	A New Chapter in Genetic Medicine: RNA Editing and its Role in Disease Pathogenesis. Trends in Molecular Medicine, 2018, 24, 294-303.	6.7	35
14	African trypanosomes evade immune clearance by O-glycosylation of the VSG surface coat. Nature Microbiology, 2018, 3, 932-938.	13.3	47
15	Variant surface glycoprotein density defines an immune evasion threshold for African trypanosomes undergoing antigenic variation. Nature Communications, 2017, 8, 828.	12.8	56
16	Loss of APOBEC1 RNA-editing function in microglia exacerbates age-related CNS pathophysiology. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 13272-13277.	7.1	34
17	Epitranscriptomic profiling across cell types reveals associations between APOBEC1-mediated RNA editing, gene expression outcomes, and cellular function. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 13296-13301.	7.1	33
18	Emerging challenges in understanding trypanosome antigenic variation. Emerging Topics in Life Sciences, 2017, 1, 585-592.	2.6	29

F Nina Papavasiliou

#	Article	IF	CITATIONS
19	Epigenetic Modulators of Monocytic Function: Implication for Steady State and Disease in the CNS. Frontiers in Immunology, 2016, 6, 661.	4.8	5
20	Base J and H3.V Regulate Transcriptional Termination in Trypanosoma brucei. PLoS Genetics, 2016, 12, e1005762.	3.5	54
21	Masters of Disguise: Antigenic Variation and the VSG Coat in Trypanosoma brucei. PLoS Pathogens, 2016, 12, e1005784.	4.7	82
22	Vesicles as Vehicles for Virulence. Trends in Parasitology, 2016, 32, 435-436.	3.3	6
23	RNA editing generates cellular subsets with diverse sequence within populations. Nature Communications, 2016, 7, 12145.	12.8	48
24	Detection of Trypanosoma brucei Variant Surface Glycoprotein Switching by Magnetic Activated Cell Sorting and Flow Cytometry. Journal of Visualized Experiments, 2016, , .	0.3	2
25	The VEXing problem of monoallelic expression in the African trypanosome. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 7017-7019.	7.1	2
26	Pseudouridylation meets next-generation sequencing. Methods, 2016, 107, 63-72.	3.8	60
27	A Conserved DNA Repeat Promotes Selection of a Diverse Repertoire of Trypanosoma brucei Surface Antigens from the Genomic Archive. PLoS Genetics, 2016, 12, e1005994.	3.5	34
28	Bromodomain Proteins Contribute to Maintenance of Bloodstream Form Stage Identity in the African Trypanosome. PLoS Biology, 2015, 13, e1002316.	5.6	58
29	The in vivo dynamics of antigenic variation in <i>Trypanosoma brucei</i> . Science, 2015, 347, 1470-1473.	12.6	134
30	DNA Methylation Dynamics of Germinal Center B Cells Are Mediated by AID. Cell Reports, 2015, 12, 2086-2098.	6.4	87
31	RNA Editing Dynamically Rewrites the Cancer Code. Trends in Cancer, 2015, 1, 211-212.	7.4	11
32	A Host–Pathogen Interaction Reduced to First Principles: Antigenic Variation in T. brucei. Results and Problems in Cell Differentiation, 2015, 57, 23-46.	0.7	16
33	You break it, you fix it: functions for AID downstream of deamination. Nature Immunology, 2013, 14, 1112-1114.	14.5	2
34	Solubility-based genetic screen identifies RING finger protein 126 as an E3 ligase for activation-induced cytidine deaminase. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 1029-1034.	7.1	53
35	A comprehensive analysis of the effects of the deaminase AID on the transcriptome and methylome of activated B cells. Nature Immunology, 2013, 14, 749-755.	14.5	55
36	Telomere Length Affects the Frequency and Mechanism of Antigenic Variation in Trypanosoma brucei. PLoS Pathogens, 2012, 8, e1002900.	4.7	69

F Nina Papavasiliou

#	Article	IF	CITATIONS
37	Transcriptome-wide sequencing reveals numerous APOBEC1 mRNA-editing targets in transcript 3′ UTRs. Nature Structural and Molecular Biology, 2011, 18, 230-236.	8.2	217
38	MicroRNA control of lymphocyte differentiation and function. Current Opinion in Immunology, 2011, 23, 368-373.	5.5	71
39	A Single Zinc Ion Is Sufficient for an Active Trypanosoma brucei tRNA Editing Deaminase. Journal of Biological Chemistry, 2011, 286, 20366-20374.	3.4	18
40	The C-terminal end of the Trypanosoma brucei editing deaminase plays a critical role in tRNA binding. Rna, 2011, 17, 1296-1306.	3.5	20
41	A Role for Autophagic Protein Beclin 1 Early in Lymphocyte Development. Journal of Immunology, 2011, 186, 2201-2209.	0.8	96
42	Using T. brucei as a biological epitope-display platform to elicit specific antibody responses. Journal of Immunological Methods, 2010, 362, 190-194.	1.4	9
43	MicroRNAs of the immune system. Annals of the New York Academy of Sciences, 2010, 1183, 183-194.	3.8	149
44	Cytidine deaminases: AlDing DNA demethylation?. Genes and Development, 2010, 24, 2107-2114.	5.9	109
45	Diverse functions for DNA and RNA editing in the immune system. RNA Biology, 2010, 7, 220-228.	3.1	47
46	MicroRNA-155 Modulates Transforming Growth Factor-β Signaling In Chronic Lymphocytic Leukemia through Targeting of Casein Kinase γ Isoform 2. Blood, 2010, 116, 3584-3584.	1.4	0
47	Switch recombination and somatic hypermutation are controlled by the heavy chain 3′ enhancer region. Journal of Experimental Medicine, 2009, 206, 2613-2623.	8.5	58
48	A yeast-endonuclease-generated DNA break induces antigenic switching in Trypanosoma brucei. Nature, 2009, 459, 278-281.	27.8	135
49	A coming-of-age story: activation-induced cytidine deaminase turns 10. Nature Immunology, 2009, 10, 1147-1153.	14.5	92
50	Long Noncoding RNAs: Implications for Antigen Receptor Diversification. Advances in Immunology, 2009, 104, 25-50.	2.2	3
51	MicroRNA-155 Is a Negative Regulator of Activation-Induced Cytidine Deaminase. Immunity, 2008, 28, 621-629.	14.3	410
52	Viral induction of AID is independent of the interferon and the Toll-like receptor signaling pathways but requires NF-κB. Journal of Experimental Medicine, 2007, 204, 259-265.	8.5	46
53	Beyond SHM and CSR: AID and Related Cytidine Deaminases in the Host Response to Viral Infection. Advances in Immunology, 2007, 94, 215-244.	2.2	38
54	C to U editing at position 32 of the anticodon loop precedes tRNA 5' leader removal in trypanosomatids. Nucleic Acids Research, 2007, 35, 6740-6749.	14.5	24

F NINA PAPAVASILIOU

#	Article	IF	CITATIONS
55	Regulation of AID expression in the immune response. Journal of Experimental Medicine, 2007, 204, 1145-1156.	8.5	229
56	A Mammalian microRNA Expression Atlas Based on Small RNA Library Sequencing. Cell, 2007, 129, 1401-1414.	28.9	3,390
57	An adenosine-to-inosine tRNA-editing enzyme that can perform C-to-U deamination of DNA. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 7821-7826.	7.1	89
58	Immunoglobulin Somatic Hypermutation. Annual Review of Genetics, 2007, 41, 107-120.	7.6	224
59	A Role for Activation-Induced Cytidine Deaminase in the Host Response against a Transforming Retrovirus. Immunity, 2006, 24, 779-786.	14.3	96
60	The Transcription Elongation Complex Directs Activation-Induced Cytidine Deaminase-Mediated DNA Deamination. Molecular and Cellular Biology, 2006, 26, 4378-4385.	2.3	64
61	The regulation of somatic hypermutation. Current Opinion in Immunology, 2004, 16, 241-245.	5.5	24
62	A Modified Digestionâ€Circularization PCR (DCâ€PCR) Approach to Detect Hypermutationâ€Associated DNA Double‣trand Breaks. Annals of the New York Academy of Sciences, 2003, 987, 135-139.	3.8	0
63	AID Mediates Hypermutation by Deaminating Single Stranded DNA. Journal of Experimental Medicine, 2003, 197, 1291-1296.	8.5	406
64	The Activation-induced Deaminase Functions in a Postcleavage Step of the Somatic Hypermutation Process. Journal of Experimental Medicine, 2002, 195, 1193-1198.	8.5	106
65	Somatic Hypermutation of Immunoglobulin Genes. Cell, 2002, 109, S35-S44.	28.9	201
66	Cell-cycle-regulated DNA double-strand breaks in somatic hypermutation of immunoglobulin genes. Nature, 2000, 408, 216-221.	27.8	250
67	Transfer RNA Editing Enzymes; At the Crossroads of Affinity and Specificity. , 0, , 121-145.		0
68	Inducible Natural IgMs Bridge Trypanosome Lytic Factor Assembly and Parasite Recognition. SSRN Electronic Journal, 0, , .	0.4	0