Matthew D Albaugh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5253873/publications.pdf

Version: 2024-02-01

60 papers

2,847 citations

218677 26 h-index 50 g-index

63 all docs 63 docs citations

times ranked

63

4361 citing authors

#	Article	IF	CITATIONS
1	Brain structural covariance network differences in adults with alcohol dependence and heavyâ€drinking adolescents. Addiction, 2022, 117, 1312-1325.	3.3	4
2	P112. Polygenic Risk for Depression Moderates an Association Between Amygdala Connectivity and Internalizing Symptomatology in Childhood. Biological Psychiatry, 2022, 91, \$132.	1.3	0
3	Differential Effects of Adolescent Versus Early Adult Cannabis Initiation on Longitudinal Brain Development: Evidence for Adolescence as a Period of Vulnerability. Biological Psychiatry, 2022, 91, S9.	1.3	O
4	Obsessive-Compulsive Disorder in the Adolescent Brain Cognitive Development Study: Impact of Changes From DSM-IV to DSM-5. Journal of the American Academy of Child and Adolescent Psychiatry, 2021, 60, 421-424.	0.5	2
5	Substance Use Initiation, Particularly Alcohol, in Drug-Naive Adolescents: Possible Predictors andÂConsequences From a Large Cohort Naturalistic Study. Journal of the American Academy of Child and Adolescent Psychiatry, 2021, 60, 623-636.	0.5	25
6	Examination of the association between exposure to childhood maltreatment and brain structure in young adults: a machine learning analysis. Neuropsychopharmacology, 2021, 46, 1888-1894.	5.4	9
7	Brain Structure and Internalizing Psychopathology in Children 9-10 Years of Age: Results From the Adolescent Brain Cognitive Development Study. Biological Psychiatry, 2021, 89, S367.	1.3	0
8	Rates of Incidental Findings in Brain Magnetic Resonance Imaging in Children. JAMA Neurology, 2021, 78, 578.	9.0	28
9	Maturational trajectories of pericortical contrast in typical brain development. Neurolmage, 2021, 235, 117974.	4.2	9
10	Sex Differences in Psychopathology in a Large Cohort of Nine and Ten-Year-Olds. Psychiatry Research, 2021, 302, 114026.	3.3	7
11	Recalibrating expectations about effect size: A multi-method survey of effect sizes in the ABCD study. PLoS ONE, 2021, 16, e0257535.	2.5	71
12	Association of Alcohol With Cortical Thickness in Adolescents—Reply. JAMA Psychiatry, 2021, 78, 1284.	11.0	2
13	Association of Cannabis Use During Adolescence With Neurodevelopment. JAMA Psychiatry, 2021, 78, 1031.	11.0	82
14	Substance use patterns in 9-10 year olds: Baseline findings from the adolescent brain cognitive development (ABCD) study. Drug and Alcohol Dependence, 2021, 227, 108946.	3.2	19
15	Multimethod investigation of the neurobiological basis of ADHD symptomatology in children aged 9-10: baseline data from the ABCD study. Translational Psychiatry, 2021, 11, 64.	4.8	20
16	Demographic and mental health assessments in the adolescent brain and cognitive development study: Updates and age-related trajectories. Developmental Cognitive Neuroscience, 2021, 52, 101031.	4.0	34
17	Longitudinal associations between amygdala reactivity and cannabis use in a large sample of adolescents. Psychopharmacology, 2020, 237, 3447-3458.	3.1	7
18	Tubulin Polymerization Promoting Protein (TPPP) gene methylation and corpus callosum measures in maltreated children. Psychiatry Research - Neuroimaging, 2020, 298, 111058.	1.8	4

#	Article	IF	Citations
19	Investigation of Psychiatric and Neuropsychological Correlates of Default Mode Network and Dorsal Attention Network Anticorrelation in Children. Cerebral Cortex, 2020, 30, 6083-6096.	2.9	32
20	Social supports moderate the effects of child adversity on neural correlates of threat processing. Child Abuse and Neglect, 2020, 102, 104413.	2.6	16
21	Correspondence Between Perceived Pubertal Development and Hormone Levels in 9-10 Year-Olds From the Adolescent Brain Cognitive Development Study. Frontiers in Endocrinology, 2020, 11, 549928.	3 . 5	45
22	The initiation of cannabis use in adolescence is predicted by sexâ€specific psychosocial and neurobiological features. European Journal of Neuroscience, 2019, 50, 2346-2356.	2.6	32
23	131. OTX2, Child Abuse, and Psychosis. Biological Psychiatry, 2019, 85, S54-S55.	1.3	0
24	58. Child Abuse, Depression, and Methylation in Myelin-Related Genes. Biological Psychiatry, 2019, 85, S24-S25.	1.3	0
25	White matter microstructure is associated with hyperactive/inattentive symptomatology and polygenic risk for attention-deficit/hyperactivity disorder in a population-based sample of adolescents. Neuropsychopharmacology, 2019, 44, 1597-1603.	5.4	22
26	Amygdalar reactivity is associated with prefrontal cortical thickness in a large population-based sample of adolescents. PLoS ONE, 2019, 14, e0216152.	2.5	5
27	Connecting With Resilience. Biological Psychiatry, 2019, 85, 621-622.	1.3	2
28	Ageâ€specific associations between oestradiol, corticoâ€amygdalar structural covariance, and verbal and spatial skills. Journal of Neuroendocrinology, 2019, 31, e12698.	2.6	2
29	Grey Matter Volume Differences Associated with Extremely Low Levels of Cannabis Use in Adolescence. Journal of Neuroscience, 2019, 39, 1817-1827.	3.6	70
30	Ventromedial Prefrontal Volume in Adolescence Predicts Hyperactive/Inattentive Symptoms in Adulthood. Cerebral Cortex, 2019, 29, 1866-1874.	2.9	16
31	The ventromedial prefrontal cortex: a putative locus for trait inattention. Neuropsychopharmacology, 2019, 44, 226-227.	5.4	4
32	Individual differences in stopâ€related activity are inflated by the adaptive algorithm in the stop signal task. Human Brain Mapping, 2018, 39, 3263-3276.	3.6	9
33	Neural circuitry underlying sustained attention in healthy adolescents and in ADHD symptomatology. Neurolmage, 2018, 169, 395-406.	4.2	47
34	Demographic, physical and mental health assessments in the adolescent brain and cognitive development study: Rationale and description. Developmental Cognitive Neuroscience, 2018, 32, 55-66.	4.0	455
35	F67. Increased Amygdalar Activation to Angry Faces is Linked to Reduced Prefrontal Cortical Thickness and Hyperactive/Inattentive Symptomatology in Adolescents. Biological Psychiatry, 2018, 83, S263-S264.	1.3	0
36	Methylation in OTX2 and related genes, maltreatment, and depression in children. Neuropsychopharmacology, 2018, 43, 2204-2211.	5 . 4	38

#	Article	IF	CITATIONS
37	Inattention and Reaction Time Variability Are Linked to Ventromedial Prefrontal Volume in Adolescents. Biological Psychiatry, 2017, 82, 660-668.	1.3	38
38	Age-related volumetric change of limbic structures and subclinical anxious/depressed symptomatology in typically developing children and adolescents. Biological Psychology, 2017, 124, 133-140.	2.2	38
39	Sex-specific associations of testosterone with prefrontal-hippocampal development and executive function. Psychoneuroendocrinology, 2017, 76, 206-217.	2.7	44
40	Dehydroepiandrosterone impacts working memory by shaping cortico-hippocampal structural covariance during development. Psychoneuroendocrinology, 2017, 86, 110-121.	2.7	27
41	Anxious/depressed symptoms are related to microstructural maturation of white matter in typically developing youths. Development and Psychopathology, 2017, 29, 751-758.	2.3	30
42	976. Estradiol, Cortico-Amygdalar Structural Networks and Cognitive Development. Biological Psychiatry, 2017, 81, S395.	1.3	0
43	Neuroimaging Biomarkers of a History of Concussion Observed in Asymptomatic Young Athletes. Journal of Neurotrauma, 2016, 33, 803-810.	3.4	41
44	Structural Vestiges of Early Fearful Temperament in the Adult Brain. Journal of the American Academy of Child and Adolescent Psychiatry, 2016, 55, 91-92.	0.5	0
45	The developmental relationship between DHEA and visual attention is mediated by structural plasticity of cortico-amygdalar networks. Psychoneuroendocrinology, 2016, 70, 122-133.	2.7	23
46	A testosterone-related structural brain phenotype predicts aggressive behavior from childhood to adulthood. Psychoneuroendocrinology, 2016, 63, 109-118.	2.7	89
47	Trajectories of cortical thickness maturation in normal brain development — The importance of quality control procedures. Neurolmage, 2016, 125, 267-279.	4.2	251
48	Postconcussion Symptoms Are Associated with Cerebral Cortical Thickness in Healthy Collegiate and Preparatory School Ice Hockey Players. Journal of Pediatrics, 2015, 166, 394-400.e1.	1.8	33
49	Trajectories of cortical surface area and cortical volume maturation in normal brain development. Data in Brief, 2015, 5, 929-938.	1.0	43
50	Child Temperament, Maternal Parenting Behavior, and Child Social Functioning. Journal of Child and Family Studies, 2015, 24, 1152-1162.	1.3	19
51	Anxious/Depressed Symptoms are Linked to Right Ventromedial Prefrontal Cortical Thickness Maturation in Healthy Children and Young Adults. Cerebral Cortex, 2014, 24, 2941-2950.	2.9	149
52	Cortical Thickness, Cortico-Amygdalar Networks, and Externalizing Behaviors in Healthy Children. Biological Psychiatry, 2014, 75, 65-72.	1.3	70
53	Cortical Thickness Maturation and Duration of Music Training: Health-Promoting Activities Shape Brain Development. Journal of the American Academy of Child and Adolescent Psychiatry, 2014, 53, 1153-1161.e2.	0.5	132
54	Evidence for a cerebral cortical thickness network anti-correlated with amygdalar volume in healthy youths: Implications for the neural substrates of emotion regulation. NeuroImage, 2013, 71, 42-49.	4.2	32

#	Article	IF	CITATION
55	Decreased Regional Cortical Thickness and Thinning Rate Are Associated With Inattention Symptoms in Healthy Children. Journal of the American Academy of Child and Adolescent Psychiatry, 2012, 51, 18-27.e2.	0.5	82
56	Right Anterior Cingulate Cortical Thickness and Bilateral Striatal Volume Correlate with Child Behavior Checklist Aggressive Behavior Scores in Healthy Children. Biological Psychiatry, 2011, 70, 283-290.	1.3	86
57	COMT Val158Met Genotype as a Risk Factor for Problem Behaviors in Youth. Journal of the American Academy of Child and Adolescent Psychiatry, 2010, 49, 841-849.	0.5	49
58	Amygdala Volume Associated With Alcohol Abuse Relapse and Craving. American Journal of Psychiatry, 2008, 165, 1179-1184.	7.2	215
59	MRI-based surface-assisted parcellation of human cerebellar cortex: an anatomically specified method with estimate of reliability. NeuroImage, 2005, 25, 1146-1160.	4.2	91
60	Decreased Absolute Amygdala Volume in Cocaine Addicts. Neuron, 2004, 44, 729-740.	8.1	140