Yassmine Chebaro

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5253170/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Allostery in Its Many Disguises: From Theory to Applications. Structure, 2019, 27, 566-578.	3.3	285
2	Crucial role of nonspecific interactions in amyloid nucleation. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 17869-17874.	7.1	157
3	The OPEP protein model: from single molecules, amyloid formation, crowding and hydrodynamics to DNA/RNA systems. Chemical Society Reviews, 2014, 43, 4871-4893.	38.1	147
4	The Coarse-Grained OPEP Force Field for Non-Amyloid and Amyloid Proteins. Journal of Physical Chemistry B, 2012, 116, 8741-8752.	2.6	98
5	Structures and Thermodynamics of Alzheimer's Amyloid-β Aβ(16â~³35) Monomer and Dimer by Replica Exchange Molecular Dynamics Simulations: Implication for Full-Length Aβ Fibrillation. Journal of Physical Chemistry B, 2009, 113, 7668-7675.	2.6	97
6	Structures of Aβ17–42 Trimers in Isolation and with Five Small-Molecule Drugs Using a Hierarchical Computational Procedure. Journal of Physical Chemistry B, 2012, 116, 8412-8422.	2.6	95
7	Intrinsically Disordered Energy Landscapes. Scientific Reports, 2015, 5, 10386.	3.3	80
8	Replica Exchange Molecular Dynamics Simulations of Coarse-grained Proteins in Implicit Solvent. Journal of Physical Chemistry B, 2009, 113, 267-274.	2.6	70
9	Targeting the early steps of Aβ16–22 protofibril disassembly by Nâ€methylated inhibitors: A numerical study. Proteins: Structure, Function and Bioinformatics, 2009, 75, 442-452.	2.6	64
10	The Conversion of Helix H2 to Î ² -Sheet Is Accelerated in the Monomer and Dimer of the Prion Protein upon T183A Mutation. Journal of Physical Chemistry B, 2009, 113, 6942-6948.	2.6	39
11	The molecular mechanisms underlying the ERα-36-mediated signaling in breast cancer. Oncogene, 2017, 36, 2503-2514.	5.9	35
12	The Asymmetric Binding of PGC-1α to the ERRα and ERRγ Nuclear Receptor Homodimers Involves a Similar Recognition Mechanism. PLoS ONE, 2013, 8, e67810.	2.5	34
13	Targeting the Two Oncogenic Functional Sites of the HPV E6 Oncoprotein with a Highâ€Affinity Bivalent Ligand. Angewandte Chemie - International Edition, 2015, 54, 7958-7962.	13.8	32
14	Structural Basis for the Accommodation of Bis- and Tris-Aromatic Derivatives in Vitamin D Nuclear Receptor. Journal of Medicinal Chemistry, 2012, 55, 8440-8449.	6.4	30
15	Substitutions at residue 211 in the prion protein drive a switch between CJD and GSS syndrome, a new mechanism governing inherited neurodegenerative disorders. Human Molecular Genetics, 2012, 21, 5417-5428.	2.9	29
16	Structural Basis for DNA Gyrase Interaction with Coumermycin A1. Journal of Medicinal Chemistry, 2019, 62, 4225-4231.	6.4	29
17	Phosphorylation of the Retinoic Acid Receptor Alpha Induces a Mechanical Allosteric Regulation and Changes in Internal Dynamics. PLoS Computational Biology, 2013, 9, e1003012.	3.2	24
18	NR3E receptors in cnidarians: A new family of steroid receptor relatives extends the possible mechanisms for ligand binding. Journal of Steroid Biochemistry and Molecular Biology, 2018, 184, 11-19.	2.5	17

YASSMINE CHEBARO

#	Article	IF	CITATIONS
19	Protein Structural Statistics with PSS. Journal of Chemical Information and Modeling, 2013, 53, 2471-2482.	5.4	11
20	Modulation of RXR-DNA complex assembly by DNA context. Molecular and Cellular Endocrinology, 2019, 481, 44-52.	3.2	9
21	A multifunnel energy landscape encodes the competing $\hat{I}\pm$ -helix and \hat{I}^2 -hairpin conformations for a designed peptide. Physical Chemistry Chemical Physics, 2020, 22, 1359-1370.	2.8	9
22	BpForms and BcForms: a toolkit for concretely describing non-canonical polymers and complexes to facilitate global biochemical networks. Genome Biology, 2020, 21, 117.	8.8	8
23	A structural signature motif enlightens the origin and diversification of nuclear receptors. PLoS Genetics, 2021, 17, e1009492.	3.5	8
24	High-Risk Mucosal Human Papillomavirus 16 (HPV16) E6 Protein and Cutaneous HPV5 and HPV8 E6 Proteins Employ Distinct Strategies To Interfere with Interferon Regulatory Factor 3-Mediated Beta Interferon Expression. Journal of Virology, 2022, 96, e0187521.	3.4	7
25	Allosteric Regulation in the Ligand Binding Domain of Retinoic Acid Receptorl ³ . PLoS ONE, 2017, 12, e0171043.	2.5	6