
David B Lobell

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5252768/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Prior crop season management constrains farmer adaptation to warming temperatures: Evidence from the Indo-Gangetic Plains. Science of the Total Environment, 2022, 807, 151671.	3.9	8
2	Evaluating maize yield response to fertilizer and soil in Mexico using ground and satellite approaches. Field Crops Research, 2022, 276, 108393.	2.3	2
3	Mapping Sugarcane in Central India with Smartphone Crowdsourcing. Remote Sensing, 2022, 14, 703.	1.8	9
4	Combining randomized field experiments with observational satellite data to assess the benefits of crop rotations on yields. Environmental Research Letters, 2022, 17, 044066.	2.2	6
5	Early- and in-season crop type mapping without current-year ground truth: Generating labels from historical information via a topology-based approach. Remote Sensing of Environment, 2022, 274, 112994.	4.6	42
6	Globally ubiquitous negative effects of nitrogen dioxide on crop growth. Science Advances, 2022, 8, .	4.7	21
7	Evaluation of soil-dependent crop yield outcomes in Nepal using ground and satellite-based approaches. Field Crops Research, 2021, 260, 107987.	2.3	12
8	A million kernels of truth: Insights into scalable satellite maize yield mapping and yield gap analysis from an extensive ground dataset in the US Corn Belt. Remote Sensing of Environment, 2021, 253, 112174.	4.6	54
9	Uniting remote sensing, crop modelling and economics for agricultural risk management. Nature Reviews Earth & Environment, 2021, 2, 140-159.	12.2	88
10	Using satellite imagery to understand and promote sustainable development. Science, 2021, 371, .	6.0	138
11	Scalable deep learning to identify brick kilns and aid regulatory capacity. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	16
12	Anthropogenic climate change has slowed global agricultural productivity growth. Nature Climate Change, 2021, 11, 306-312.	8.1	336
13	Using Sentinel-1, Sentinel-2, and Planet Imagery to Map Crop Type of Smallholder Farms. Remote Sensing, 2021, 13, 1870.	1.8	34
14	Cleaner air has contributed one-fifth of US maize and soybean yield gains since 1999. Environmental Research Letters, 2021, 16, 074049.	2.2	21
15	The impact of groundwater depletion on agricultural production in India. Environmental Research Letters, 2021, 16, 085003.	2.2	33
16	Twice Is Nice: The Benefits of Two Ground Measures for Evaluating the Accuracy of Satellite-Based Sustainability Estimates. Remote Sensing, 2021, 13, 3160.	1.8	9
17	Two shifts for crop mapping: Leveraging aggregate crop statistics to improve satellite-based maps in new regions. Remote Sensing of Environment, 2021, 262, 112488.	4.6	21
18	Combining GEDI and Sentinel-2 for wall-to-wall mapping of tall and short crops. Environmental Research Letters, 2021, 16, 125002.	2.2	21

#	Article	IF	CITATIONS
19	From sunlight to seed: Assessing limits to solar radiation capture and conversion in agro-ecosystems. Agricultural and Forest Meteorology, 2020, 280, 107775.	1.9	11
20	Eyes in the Sky, Boots on the Ground: Assessing Satellite―and Groundâ€Based Approaches to Crop Yield Measurement and Analysis. American Journal of Agricultural Economics, 2020, 102, 202-219.	2.4	86
21	Mapping Crop Types in Southeast India with Smartphone Crowdsourcing and Deep Learning. Remote Sensing, 2020, 12, 2957.	1.8	48
22	Mapping twenty years of corn and soybean across the US Midwest using the Landsat archive. Scientific Data, 2020, 7, 307.	2.4	56
23	The COVID-19 lockdowns: a window into the Earth System. Nature Reviews Earth & Environment, 2020, 1, 470-481.	12.2	153
24	Farm Parcel Delineation Using Spatio-temporal Convolutional Networks. , 2020, , .		14
25	Meta-Learning for Few-Shot Land Cover Classification. , 2020, , .		34
26	Changes in the drought sensitivity of US maize yields. Nature Food, 2020, 1, 729-735.	6.2	68
27	High-Resolution Soybean Yield Mapping Across the US Midwest Using Subfield Harvester Data. Remote Sensing, 2020, 12, 3471.	1.8	16
28	On the role of anthropogenic climate change in the emerging food crisis in southern Africa in the 2019–2020 growing season. Global Change Biology, 2020, 26, 2729-2730.	4.2	7
29	Weakly Supervised Deep Learning for Segmentation of Remote Sensing Imagery. Remote Sensing, 2020, 12, 207.	1.8	136
30	Viewpoint: Principles and priorities for one CGIAR. Food Policy, 2020, 91, 101825.	2.8	5
31	Using publicly available satellite imagery and deep learning to understand economic well-being in Africa. Nature Communications, 2020, 11, 2583.	5.8	158
32	Factors Constraining Timely Sowing of Wheat as an Adaptation to Climate Change in Eastern India. Weather, Climate, and Society, 2020, 12, 515-528.	0.5	15
33	Generating Interpretable Poverty Maps using Object Detection in Satellite Images. , 2020, , .		37
34	Sight for Sorghums: Comparisons of Satellite- and Ground-Based Sorghum Yield Estimates in Mali. Remote Sensing, 2020, 12, 100.	1.8	35
35	Landsat-Based Reconstruction of Corn and Soybean Yield Histories in the United States Since 1999. , 2020, , .		0

36 Meta-Learning For Few-Shot Time Series Classification. , 2020, , .

2

#	Article	IF	CITATIONS
37	A new spin on an old debate: Errors in farmer-reported production and their implications for inverse scale - Productivity relationship in Uganda. Journal of Development Economics, 2019, 141, 102376.	2.1	69
38	Predicting Economic Development using Geolocated Wikipedia Articles. , 2019, , .		31
39	Mapping Missing Population in Rural India. , 2019, , .		15
40	Tile2Vec: Unsupervised Representation Learning for Spatially Distributed Data. Proceedings of the AAAI Conference on Artificial Intelligence, 2019, 33, 3967-3974.	3.6	78
41	The role of irrigation in changing wheat yields and heat sensitivity in India. Nature Communications, 2019, 10, 4144.	5.8	146
42	Rotation Effects on Corn and Soybean Yield Inferred from Satellite and Fieldâ€ l evel Data. Agronomy Journal, 2019, 111, 2940-2948.	0.9	10
43	How much will precision nitrogen management pay off? An evaluation based on simulating thousands of corn fields over the US Corn-Belt. Field Crops Research, 2019, 240, 12-22.	2.3	32
44	Integrating satellite and climate data to predict wheat yield in Australia using machine learning approaches. Agricultural and Forest Meteorology, 2019, 274, 144-159.	1.9	319
45	Water Use Efficiency as a Constraint and Target for Improving the Resilience and Productivity of C ₃ and C ₄ Crops. Annual Review of Plant Biology, 2019, 70, 781-808.	8.6	202
46	Smallholder maize area and yield mapping at national scales with Google Earth Engine. Remote Sensing of Environment, 2019, 228, 115-128.	4.6	235
47	Satellites reveal a small positive yield effect from conservation tillage across the US Corn Belt. Environmental Research Letters, 2019, 14, 124038.	2.2	39
48	The impact of agricultural interventions can be doubled by using satellite data. Nature Sustainability, 2019, 2, 931-934.	11.5	37
49	Strengthened scientific support for the Endangerment Finding for atmospheric greenhouse gases. Science, 2019, 363, .	6.0	34
50	Crop type mapping without field-level labels: Random forest transfer and unsupervised clustering techniques. Remote Sensing of Environment, 2019, 222, 303-317.	4.6	229
51	Satellite mapping of tillage practices in the North Central US region from 2005 to 2016. Remote Sensing of Environment, 2019, 221, 417-429.	4.6	47
52	Learning to Interpret Satellite Images using Wikipedia. , 2019, , .		13
53	Differences, or lack thereof, in wheat and maize yields under three low-warming scenarios. Environmental Research Letters, 2018, 13, 065001.	2.2	17
54	Estimated impacts of emission reductions on wheat and maize crops. Climatic Change, 2018, 146, 533-545.	1.7	45

#	Article	IF	CITATIONS
55	Increasing drought and diminishing benefits of elevated carbon dioxide for soybean yields across the US Midwest. Global Change Biology, 2018, 24, e522-e533.	4.2	74
56	Hierarchical modeling of seed variety yields and decision making for future planting plans. Environment Systems and Decisions, 2018, 38, 458-470.	1.9	11
57	Anticipated burden and mitigation of carbon-dioxide-induced nutritional deficiencies and related diseases: A simulation modeling study. PLoS Medicine, 2018, 15, e1002586.	3.9	40
58	Deep Transfer Learning for Crop Yield Prediction with Remote Sensing Data. , 2018, , .		117
59	Satellite detection of cover crops and their effects on crop yield in the Midwestern United States. Environmental Research Letters, 2018, 13, 064033.	2.2	52
60	Infrastructure Quality Assessment in Africa using Satellite Imagery and Deep Learning. , 2018, , .		29
61	Synthesis and Review: an inter-method comparison of climate change impacts on agriculture. Environmental Research Letters, 2018, 13, 070401.	2.2	25
62	The important but weakening maize yield benefit of grain filling prolongation in the US Midwest. Global Change Biology, 2018, 24, 4718-4730.	4.2	41
63	Comparing estimates of climate change impacts from process-based and statistical crop models. Environmental Research Letters, 2017, 12, 015001.	2.2	212
64	Satellite detection of rising maize yield heterogeneity in the U.S. Midwest. Environmental Research Letters, 2017, 12, 014014.	2.2	41
65	Satellite-based assessment of yield variation and its determinants in smallholder African systems. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 2189-2194.	3.3	256
66	Assessing the heterogeneity and persistence of farmers' maize yield performance across the North China Plain. Field Crops Research, 2017, 205, 55-66.	2.3	20
67	Towards fine resolution global maps of crop yields: Testing multiple methods and satellites in three countries. Remote Sensing of Environment, 2017, 202, 129-141.	4.6	145
68	Landsat-based classification in the cloud: An opportunity for a paradigm shift in land cover monitoring. Remote Sensing of Environment, 2017, 202, 64-74.	4.6	160
69	Continuous Corn and Soybean Yield Penalties across Hundreds of Thousands of Fields. Agronomy Journal, 2017, 109, 541-548.	0.9	64
70	Improving the accuracy of satellite-based high-resolution yield estimation: A test of multiple scalable approaches. Agricultural and Forest Meteorology, 2017, 247, 207-220.	1.9	81
71	Using remotely sensed temperature to estimate climate response functions. Environmental Research Letters, 2017, 12, 014013.	2.2	17
72	Comparing and combining process-based crop models and statistical models with some implications for climate change. Environmental Research Letters, 2017, 12, 095010.	2.2	124

#	Article	IF	CITATIONS
73	Monitoring Ethiopian Wheat Fungus with Satellite Imagery and Deep Feature Learning. , 2017, , .		18
74	The shared and unique values of optical, fluorescence, thermal and microwave satellite data for estimating large-scale crop yields. Remote Sensing of Environment, 2017, 199, 333-349.	4.6	165
75	Temperature increase reduces global yields of major crops in four independent estimates. Proceedings of the United States of America, 2017, 114, 9326-9331.	3.3	1,708
76	Historical effects of CO2 and climate trends on global crop water demand. Nature Climate Change, 2017, 7, 901-905.	8.1	19
77	Hot spots of wheat yield decline with rising temperatures. Global Change Biology, 2017, 23, 2464-2472.	4.2	80
78	Assessing climate adaptation options and uncertainties for cereal systems in West Africa. Agricultural and Forest Meteorology, 2017, 232, 291-305.	1.9	74
79	Mapping Smallholder Yield Heterogeneity at Multiple Scales in Eastern Africa. Remote Sensing, 2017, 9, 931.	1.8	66
80	Mapping Smallholder Wheat Yields and Sowing Dates Using Micro-Satellite Data. Remote Sensing, 2016, 8, 860.	1.8	74
81	Growing sensitivity of maize to water scarcity under climate change. Scientific Reports, 2016, 6, 19605.	1.6	87
82	An approach to understanding persistent yield variation—A case study in North China Plain. European Journal of Agronomy, 2016, 77, 10-19.	1.9	15
83	Pharaoh's Dream Revisited: An Integrated US Midwest Field Research Network for Climate Adaptation. BioScience, 2016, 66, 80-85.	2.2	5
84	Combining satellite imagery and machine learning to predict poverty. Science, 2016, 353, 790-794.	6.0	938
85	Similar estimates of temperature impacts on global wheat yield by three independent methods. Nature Climate Change, 2016, 6, 1130-1136.	8.1	352
86	Yield trends under varying environmental conditions for sorghum and wheat across Australia. Agricultural and Forest Meteorology, 2016, 228-229, 276-285.	1.9	38
87	Improving the monitoring of crop productivity using spaceborne solarâ€induced fluorescence. Global Change Biology, 2016, 22, 716-726.	4.2	240
88	Colocation opportunities for large solar infrastructures and agriculture in drylands. Applied Energy, 2016, 165, 383-392.	5.1	125
89	Contribution of persistent factors to yield gaps in high-yield irrigated maize. Field Crops Research, 2016, 186, 124-132.	2.3	40
90	What aspects of future rainfall changes matter for crop yields in West Africa?. Geophysical Research Letters, 2015, 42, 8001-8010.	1.5	57

#	Article	IF	CITATIONS
91	The shifting influence of drought and heat stress for crops in northeast Australia. Global Change Biology, 2015, 21, 4115-4127.	4.2	230
92	The impacts of future climate and carbon dioxide changes on the average and variability of US maize yields under two emission scenarios. Environmental Research Letters, 2015, 10, 045003.	2.2	68
93	Reply to Consamo and Chen: Yield findings independent of cause of climate trends. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E2267-E2267.	3.3	1
94	The fingerprint of climate trends on European crop yields. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 2670-2675.	3.3	176
95	The effects of extremely wet planting conditions on maize and soybean yields. Climatic Change, 2015, 130, 247-260.	1.7	57
96	Using satellite remote sensing to understand maize yield gaps in the North China Plain. Field Crops Research, 2015, 183, 31-42.	2.3	29
97	Impacts of precipitation and temperature on crop yields in the Pampas. Climatic Change, 2015, 130, 235-245.	1.7	65
98	Response of double cropping suitability to climate change in the United States. Environmental Research Letters, 2015, 10, 024002.	2.2	68
99	A scalable satellite-based crop yield mapper. Remote Sensing of Environment, 2015, 164, 324-333.	4.6	361
100	Incorporating Climate Uncertainty into Estimates of Climate Change Impacts. Review of Economics and Statistics, 2015, 97, 461-471.	2.3	148
101	Historical climate trends, deforestation, and maize and bean yields in Nicaragua. Agricultural and Forest Meteorology, 2015, 200, 270-281.	1.9	64
102	Testing Remote Sensing Approaches for Assessing Yield Variability among Maize Fields. Agronomy Journal, 2014, 106, 24-32.	0.9	73
103	Getting caught with our plants down: the risks of a global crop yield slowdown from climate trends in the next two decades. Environmental Research Letters, 2014, 9, 074003.	2.2	82
104	Temperature and violence. Nature Climate Change, 2014, 4, 234-235.	8.1	24
105	Reply to 'Temperature and drought effects on maize yield'. Nature Climate Change, 2014, 4, 234-234.	8.1	20
106	The benefits of recent warming for maize production in high latitude China. Climatic Change, 2014, 122, 341-349.	1.7	60
107	Greater Sensitivity to Drought Accompanies Maize Yield Increase in the U.S. Midwest. Science, 2014, 344, 516-519.	6.0	779
108	Adaptation potential of European agriculture in response to climate change. Nature Climate Change, 2014, 4, 610-614.	8.1	193

#	Article	IF	CITATIONS
109	Tradeoffs and Synergies between Biofuel Production and Large Solar Infrastructure in Deserts. Environmental Science & Technology, 2014, 48, 3021-3030.	4.6	50
110	Climate change adaptation in crop production: Beware of illusions. Global Food Security, 2014, 3, 72-76.	4.0	149
111	Agricultural adaptation to climate change in rich and poor countries: Current modeling practice and potential for empirical contributions. Energy Economics, 2014, 46, 562-575.	5.6	93
112	US maize adaptability. Nature Climate Change, 2013, 3, 690-691.	8.1	35
113	The use of satellite data for crop yield gap analysis. Field Crops Research, 2013, 143, 56-64.	2.3	256
114	Reduction of transpiration and altered nutrient allocation contribute to nutrient decline of crops grown in elevated CO ₂ concentrations. Plant, Cell and Environment, 2013, 36, 697-705.	2.8	218
115	Errors in climate datasets and their effects on statistical crop models. Agricultural and Forest Meteorology, 2013, 170, 58-66.	1.9	48
116	The challenge to detect and attribute effects of climate change on human and natural systems. Climatic Change, 2013, 121, 381-395.	1.7	87
117	An assessment of wheat yield sensitivity and breeding gains in hot environments. Proceedings of the Royal Society B: Biological Sciences, 2013, 280, 20122190.	1.2	97
118	The critical role of extreme heat for maize production in the United States. Nature Climate Change, 2013, 3, 497-501.	8.1	706
119	Satellite detection of earlier wheat sowing in India and implications for yield trends. Agricultural Systems, 2013, 115, 137-143.	3.2	67
120	Climate adaptation as mitigation: the case of agricultural investments. Environmental Research Letters, 2013, 8, 015012.	2.2	78
121	Regional disparities in the CO ₂ fertilization effect and implications for crop yields. Environmental Research Letters, 2013, 8, 014054.	2.2	116
122	Seasonal energy storage using bioenergy production from abandoned croplands. Environmental Research Letters, 2013, 8, 035012.	2.2	18
123	Global crop exposure to critical high temperatures in the reproductive period: historical trends and future projections. Environmental Research Letters, 2013, 8, 024041.	2.2	350
124	The case of the missing wheat. Environmental Research Letters, 2012, 7, 021002.	2.2	7
125	Evaluating the Contribution of Weather to Maize and Wheat Yield Trends in 12 U.S. Counties. Agronomy Journal, 2012, 104, 301-311.	0.9	31
126	The Influence of Climate Change on Global Crop Productivity. Plant Physiology, 2012, 160, 1686-1697.	2.3	839

#	Article	IF	CITATIONS
127	Extreme heat effects on wheat senescence in India. Nature Climate Change, 2012, 2, 186-189.	8.1	606
128	Projected temperature changes indicate significant increase in interannual variability of U.S. maize yields. Climatic Change, 2012, 112, 525-533.	1.7	121
129	Agricultural Research and Management at the Field Scale. , 2012, , 139-169.		0
130	Climate variability and crop production in Tanzania. Agricultural and Forest Meteorology, 2011, 151, 449-460.	1.9	354
131	Effect of vineyard-scale climate variability on Pinot noir phenolic composition. Agricultural and Forest Meteorology, 2011, 151, 1556-1567.	1.9	59
132	Climate volatility and poverty vulnerability in Tanzania. Global Environmental Change, 2011, 21, 46-55.	3.6	111
133	Climate Trends and Global Crop Production Since 1980. Science, 2011, 333, 616-620.	6.0	3,040
134	Direct impacts on local climate of sugar-cane expansion in Brazil. Nature Climate Change, 2011, 1, 105-109.	8.1	208
135	An independent method of deriving the carbon dioxide fertilization effect in dry conditions using historical yield data from wet and dry years. Global Change Biology, 2011, 17, 2689-2696.	4.2	42
136	Nonlinear heat effects on African maize as evidenced by historical yield trials. Nature Climate Change, 2011, 1, 42-45.	8.1	860
137	California perennial crops in a changing climate. Climatic Change, 2011, 109, 317-333.	1.7	69
138	Climate extremes in California agriculture. Climatic Change, 2011, 109, 355-363.	1.7	34
139	Direct climate effects of perennial bioenergy crops in the United States. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 4307-4312.	3.3	199
140	Land-Cover and Surface Water Change Drive Large Albedo Increases in South America*. Earth Interactions, 2011, 15, 1-16.	0.7	38
141	Satelliteâ€Based Detection of Salinity and Sodicity Impacts on Wheat Production in the Mexicali Valley. Soil Science Society of America Journal, 2011, 75, 699-707.	1.2	5
142	A walk on the wild side. Nature Climate Change, 2011, 1, 374-375.	8.1	77
143	Regionalâ€scale Assessment of Soil Salinity in the Red River Valley Using Multiâ€year MODIS EVI and NDVI. Journal of Environmental Quality, 2010, 39, 35-41.	1.0	129
144	Remote Sensing of Soil Degradation: Introduction. Journal of Environmental Quality, 2010, 39, 1-4.	1.0	58

#	Article	IF	CITATIONS
145	Climate robustly linked to African civil war. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, E185; author reply E186-7.	3.3	64
146	Global and Regional Assessments. Advances in Global Change Research, 2010, , 177-192.	1.6	2
147	Robust negative impacts of climate change on African agriculture. Environmental Research Letters, 2010, 5, 014010.	2.2	979
148	African Agriculture in 2050: Climate Change Impacts and Adaptation Options. ICP Series on Climate Change Impacts, Adaptation, and Mitigation, 2010, , 255-266.	0.4	0
149	The poverty implications of climate-induced crop yield changes by 2030. Global Environmental Change, 2010, 20, 577-585.	3.6	364
150	Satellite evidence for yield growth opportunities in Northwest India. Field Crops Research, 2010, 118, 13-20.	2.3	26
151	On the use of statistical models to predict crop yield responses to climate change. Agricultural and Forest Meteorology, 2010, 150, 1443-1452.	1.9	636
152	Greenhouse gas mitigation by agricultural intensification. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 12052-12057.	3.3	835
153	Climate Effects on Food Security: An Overview. Advances in Global Change Research, 2010, , 13-30.	1.6	30
154	Crop Responses to Climate: Time-Series Models. Advances in Global Change Research, 2010, , 85-98.	1.6	8
155	Food Security and Adaptation to Climate Change: What Do We Know?. Advances in Global Change Research, 2010, , 133-153.	1.6	48
156	Warming increases the risk of civil war in Africa. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 20670-20674.	3.3	711
157	Regional Differences in the Influence of Irrigation on Climate. Journal of Climate, 2009, 22, 2248-2255.	1.2	185
158	Response—Energy Strategies and Efficiency. Science, 2009, 325, 812-813.	6.0	1
159	Crop Yield Gaps: Their Importance, Magnitudes, and Causes. Annual Review of Environment and Resources, 2009, 34, 179-204.	5.6	1,038
160	Shifts in African crop climates by 2050, and the implications for crop improvement and genetic resources conservation. Global Environmental Change, 2009, 19, 317-325.	3.6	221
161	Identification of external influences on temperatures in California. Climatic Change, 2008, 87, 43-55.	1.7	56
162	Estimation of the carbon dioxide (CO ₂) fertilization effect using growth rate anomalies of CO ₂ and crop yields since 1961. Global Change Biology, 2008, 14, 39-45.	4.2	47

#	Article	IF	CITATIONS
163	Estimation of the CO ₂ fertilization effect using growth rate anomalies of CO ₂ and crop yields since 1961. Global Change Biology, 2008, 14, 451-451.	4.2	42
164	The Global Potential of Bioenergy on Abandoned Agriculture Lands. Environmental Science & Technology, 2008, 42, 5791-5794.	4.6	546
165	Prioritizing Climate Change Adaptation Needs for Food Security in 2030. Science, 2008, 319, 607-610.	6.0	2,309
166	Biomass energy: the scale of the potential resource. Trends in Ecology and Evolution, 2008, 23, 65-72.	4.2	637
167	Irrigation cooling effect on temperature and heat index extremes. Geophysical Research Letters, 2008, 35, .	1.5	129
168	The Role of Irrigation Expansion in Past and Future Temperature Trends. Earth Interactions, 2008, 12, 1-11.	0.7	37
169	The Effect of Irrigation on Regional Temperatures: A Spatial and Temporal Analysis of Trends in California, 1934–2002. Journal of Climate, 2008, 21, 2063-2071.	1.2	159
170	Why are agricultural impacts of climate change so uncertain? The importance of temperature relative to precipitation. Environmental Research Letters, 2008, 3, 034007.	2.2	299
171	Satellite Monitoring of Yield Responses to Irrigation Practices across Thousands of Fields. Agronomy Journal, 2008, 100, 1005-1012.	0.9	9
172	Comments on "Methodology and Results of Calculating Central California Surface Temperature Trends: Evidence of Human-Induced Climate Change?― Journal of Climate, 2007, 20, 4486-4489.	1.2	8
173	Empirical evidence for a recent slowdown in irrigation-induced cooling. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 13582-13587.	3.3	199
174	Impacts of Day Versus Night Temperatures on Spring Wheat Yields:A Comparison of Empirical and CERES Model Predictions in Three Locations. Agronomy Journal, 2007, 99, 469-477.	0.9	145
175	Changes in diurnal temperature range and national cereal yields. Agricultural and Forest Meteorology, 2007, 145, 229-238.	1.9	250
176	Yield uncertainty at the field scale evaluated with multi-year satellite data. Agricultural Systems, 2007, 92, 76-90.	3.2	36
177	The cost of uncertainty for nitrogen fertilizer management: A sensitivity analysis. Field Crops Research, 2007, 100, 210-217.	2.3	60
178	Remote sensing assessment of regional yield losses due to sub-optimal planting dates and fallow period weed management. Field Crops Research, 2007, 101, 80-87.	2.3	41
179	Global scale climate–crop yield relationships and the impacts of recent warming. Environmental Research Letters, 2007, 2, 014002.	2.2	1,494
180	Feedbacks of Terrestrial Ecosystems to Climate Change. Annual Review of Environment and Resources, 2007, 32, 1-29.	5.6	268

#	Article	IF	CITATIONS
181	Climate change uncertainty for daily minimum and maximum temperatures: A model inter-comparison. Geophysical Research Letters, 2007, 34, .	1.5	122
182	Interpreting recent temperature trends in California. Eos, 2007, 88, 409-410.	0.1	20
183	Identification of Saline Soils with Multiyear Remote Sensing of Crop Yields. Soil Science Society of America Journal, 2007, 71, 777-783.	1.2	74
184	Historical effects of temperature and precipitation on California crop yields. Climatic Change, 2007, 81, 187-203.	1.7	240
185	Impacts of future climate change on California perennial crop yields: Model projections with climate and crop uncertainties. Agricultural and Forest Meteorology, 2006, 141, 208-218.	1.9	246
186	Evaluating strategies for improved water use in spring wheat with CERES. Agricultural Water Management, 2006, 84, 249-258.	2.4	40
187	Regional importance of crop yield constraints: Linking simulation models and geostatistics to interpret spatial patterns. Ecological Modelling, 2006, 196, 173-182.	1.2	52
188	Weather-based yield forecasts developed for 12 California crops. California Agriculture, 2006, 60, 211-215.	0.5	14
189	Analysis of wheat yield and climatic trends in Mexico. Field Crops Research, 2005, 94, 250-256.	2.3	228
190	Cropland distributions from temporal unmixing of MODIS data. Remote Sensing of Environment, 2004, 93, 412-422.	4.6	272
191	Spatiotemporal patterns of cropland area and net primary production in the central United States estimated from USDA agricultural information. Geophysical Research Letters, 2004, 31, .	1.5	32
192	Relative importance of soil and climate variability for nitrogen management in irrigated wheat. Field Crops Research, 2004, 87, 155-165.	2.3	33
193	Remote sensing of regional crop production in the Yaqui Valley, Mexico: estimates and uncertainties. Agriculture, Ecosystems and Environment, 2003, 94, 205-220.	2.5	301
194	A method for quantifying vulnerability, applied to the agricultural system of the Yaqui Valley, Mexico. Global Environmental Change, 2003, 13, 255-267.	3.6	428
195	Per-Pixel Analysis of Forest Structure. , 2003, , 209-254.		18
196	Climate and Management Contributions to Recent Trends in U.S. Agricultural Yields. Science, 2003, 299, 1032-1032.	6.0	232
197	Moisture Effects on Soil Reflectance. Soil Science Society of America Journal, 2002, 66, 722-727.	1.2	452
198	Soil, climate, and management impacts on regional wheat productivity in Mexico from remote sensing. Agricultural and Forest Meteorology, 2002, 114, 31-43.	1.9	56

#	Article	IF	CITATIONS
199	Moisture Effects on Soil Reflectance. Soil Science Society of America Journal, 2002, 66, 722.	1.2	145
200	Subpixel canopy cover estimation of coniferous forests in Oregon using SWIR imaging spectrometry. Journal of Geophysical Research, 2001, 106, 5151-5160.	3.3	37
201	Quantifying Vegetation Change in Semiarid Environments. Remote Sensing of Environment, 2000, 73, 87-102.	4.6	413
202	A Biogeophysical Approach for Automated SWIR Unmixing of Soils and Vegetation. Remote Sensing of Environment, 2000, 74, 99-112.	4.6	324