Jonathan E Oti

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5252371/publications.pdf Version: 2024-02-01

Ιονατήαν Ε Οτι

#	Article	IF	CITATIONS
1	Properties of high-density silica fume-based gel and its potential use in high-temperature lubricants and geopolymer binders. Journal of Thermal Analysis and Calorimetry, 2022, 147, 7693-7699.	3.6	0
2	Impacts of MgO waste:CGBS formulations on the performance of a stabilised natural high sulphate bearing soil. Construction and Building Materials, 2022, 315, 125745.	7.2	9
3	Road Pavement Thickness and Construction Depth Optimization Using Treated and Untreated Artificially-Synthesized Expansive Road Subgrade Materials with Varying Plasticity Index. Materials, 2022, 15, 2773.	2.9	10
4	Suppression of Sulfate-Induced Expansion with Lime–Silica Fume Blends. Materials, 2022, 15, 2821.	2.9	2
5	Microstructure and Physical-Mechanical Characteristics of Treated Kaolin-Bentonite Mixture for Application in Compacted Liner Systems. Sustainability, 2021, 13, 1617.	3.2	8
6	Using silica fume based activator in sustainable geopolymer binder for building application. Construction and Building Materials, 2021, 275, 122177.	7.2	34
7	Optimization of MgO-GGBS Cementitious Systems Using Thermo-Chemical Approaches. Sustainability, 2021, 13, 9378.	3.2	3
8	Appropriate Use of Lime in the Study of the Physicochemical Behaviour of Stabilised Lateritic Soil under Continuous Water Ingress. Sustainability, 2021, 13, 257.	3.2	19
9	The Strength Characterisation of Concrete Made with Alumina Waste Filler. Sustainability, 2020, 12, 10235.	3.2	2
10	Strength and Swell Performance of High-Sulphate Kaolinite Clay Soil. Sustainability, 2020, 12, 10164.	3.2	10
11	Mechanical Properties and Microstructure of Fibre-Reinforced Clay Blended with By-Product Cementitious Materials. Geosciences (Switzerland), 2020, 10, 241.	2.2	24
12	Durability of Concrete Containing PFA-GGBS By-products. Journal of Civil Engineering and Construction, 2020, 9, 165-174.	0.7	5
13	The Development of Stabilised Clay-Hemp Building Material for Sustainability and Low Carbon Use. Journal of Civil Engineering and Construction, 2020, 9, 205-214.	0.7	6
14	Performance of sodium silicate free geopolymers from metakaolin (MK) and Rice Husk Ash (RHA): Effect on tensile strength and microstructure. Construction and Building Materials, 2018, 189, 307-313.	7.2	43
15	Problems Encountered in the Life Cycle Assessment (LCA) of Recycled Materials in Construction. Lecture Notes in Civil Engineering, 2018, , 48-64.	0.4	0
16	Challenges in Life Cycle Assessment (LCA) of stabilised clay-based construction materials. Applied Clay Science, 2017, 144, 121-130.	5.2	53
17	Development of stabilised brick and mortar using biomass waste. Proceedings of Institution of Civil Engineers: Construction Materials, 2015, 168, 241-250.	1.1	1
18	Development of stabilised brick and mortar using biomass waste. Proceedings of Institution of Civil Engineers: Construction Materials, 2015, 168, 241-250.	1.1	0

JONATHAN Ε ΟΤΙ

#	Article	IF	CITATIONS
19	The development of unfired clay building material using Brick Dust Waste and Mercia mudstone clay. Applied Clay Science, 2014, 102, 148-154.	5.2	37
20	Alumina filler waste as clay replacement material for unfired brick production. Engineering Geology, 2013, 163, 68-74.	6.3	48
21	Stabilised unfired clay bricks for environmental and sustainable use. Applied Clay Science, 2012, 58, 52-59.	5.2	87
22	Designed non-fired clay mixes for sustainable and low carbon use. Applied Clay Science, 2012, 59-60, 131-139.	5.2	30
23	Applications of slate waste material in the UK. Proceedings of Institution of Civil Engineers: Waste and Resource Management, 2010, 163, 9-15.	0.8	3
24	Engineering properties of concrete made with slate waste. Proceedings of Institution of Civil Engineers: Construction Materials, 2010, 163, 131-142.	1.1	8
25	Unfired clay masonry bricks incorporating slate waste. Proceedings of Institution of Civil Engineers: Waste and Resource Management, 2010, 163, 17-27.	0.8	7
26	Sustainable masonry mortar for brick joint and plaster in the UK. Proceedings of Institution of Civil Engineers: Construction Materials, 2010, 163, 87-96.	1.1	6
27	Freeze–thaw of stabilised clay brick. Proceedings of Institution of Civil Engineers: Waste and Resource Management, 2010, 163, 129-135.	0.8	12
28	Design thermal values for unfired clay bricks. Materials & Design, 2010, 31, 104-112.	5.1	59
29	Engineering properties of unfired clay masonry bricks. Engineering Geology, 2009, 107, 130-139.	6.3	172
30	Compressive strength and microstructural analysis of unfired clay masonry bricks. Engineering Geology, 2009, 109, 230-240.	6.3	94
31	Unfired clay bricks: from laboratory to industrial production. Proceedings of the Institution of Civil Engineers: Engineering Sustainability, 2009, 162, 229-237.	0.7	15
32	Developing unfired stabilised building materials in the UK. Proceedings of the Institution of Civil Engineers: Engineering Sustainability, 2008, 161, 211-218.	0.7	30
33	Using slag for unfired-clay masonry-bricks. Proceedings of Institution of Civil Engineers: Construction Materials, 2008, 161, 147-155.	1.1	34