Carolin MÃ¹/₄ller

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5252224/publications.pdf

Version: 2024-02-01

933447 940533 19 282 10 16 citations h-index g-index papers 21 21 21 329 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Active repair of a dinuclear photocatalyst for visible-light-driven hydrogen production. Nature Chemistry, 2022, 14, 500-506.	13.6	32
2	A Combined Spectroscopic and Theoretical Study on a Ruthenium Complex Featuring a Ï€â€Extended dppz Ligand for Lightâ€Driven Accumulation of Multiple Reducing Equivalents. Chemistry - A European Journal, 2022, 28, e202103882.	3.3	5
3	Influence of the Linker Chemistry on the Photoinduced Chargeâ€Transfer Dynamics of Heteroâ€dinuclear Photocatalysts. Chemistry - A European Journal, 2022, 28, .	3.3	6
4	Outpacing conventional nicotinamide hydrogenation catalysis by a strongly communicating heterodinuclear photocatalyst. Nature Communications, 2022, 13, 2538.	12.8	21
5	Link to glow - iEDDA conjugation of a Ruthenium(II) tetrazine complex leading to dihydropyrazine and pyrazine complexes with improved 1O2 formation ability. Journal of Photochemistry and Photobiology, 2022, 11, 100130.	2.5	3
6	KiMoPack: A <tt>python</tt> Package for Kinetic Modeling of the Chemical Mechanism. Journal of Physical Chemistry A, 2022, 126, 4087-4099.	2. 5	19
7	Photophysics of Ruthenium(II) Complexes with Thiazole π-Extended Dipyridophenazine Ligands. Inorganic Chemistry, 2021, 60, 760-773.	4.0	16
8	Influence of the Protonation State on the Excited-State Dynamics of Ruthenium(II) Complexes with Imidazole π-Extended Dipyridophenazine Ligands. Journal of Physical Chemistry A, 2021, 125, 5911-5921.	2. 5	8
9	Hydrogen Production at a NiO Photocathode Based on a Ruthenium Dye–Cobalt Diimine Dioxime Catalyst Assembly: Insights from Advanced Spectroscopy and Post-operando Characterization. ACS Applied Materials & Interfaces, 2021, 13, 49802-49815.	8.0	16
10	Modulating the Excited-State Decay Pathways of Cu(I) $4HIi>Imidazolate Complexes by Excitation Wavelength and Ligand Backbone. Journal of Physical Chemistry B, 2021, 125, 11498-11511.$	2.6	5
11	Multifunctional Polyoxometalate Platforms for Supramolecular Lightâ€Driven Hydrogen Evolution**. Chemistry - A European Journal, 2021, 27, 16846-16852.	3.3	6
12	The electron that breaks the catalyst's back – excited state dynamics in intermediates of molecular photocatalysts. Physical Chemistry Chemical Physics, 2021, 23, 27397-27403.	2.8	4
13	Role of MLCT States in the Franck–Condon Region of Neutral, Heteroleptic Cu(I)–4 <i>H</i> i-imidazolate Complexes: A Spectroscopic and Theoretical Study. Journal of Physical Chemistry A, 2020, 124, 6607-6616.	2.5	13
14	Molecular Scylla and Charybdis: Maneuvering between pH Sensitivity and Excited-State Localization in Ruthenium Bi(benz)imidazole Complexes. Inorganic Chemistry, 2020, 59, 12097-12110.	4.0	19
15	Structure of Diethylâ€Phosphonic Acid Anchoring Group Affects the Chargeâ€Separated State on an Iridium(III) Complex Functionalized NiO Surface. ChemPhotoChem, 2020, 4, 618-629.	3.0	8
16	Imaging the Renner–Teller effect using laser-induced electron diffraction. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 8173-8177.	7.1	41
17	Dimethylaniline functionalised pyrene fluorophores; dual colour pH switching in solution and self-assembled monolayers. Physical Chemistry Chemical Physics, 2019, 21, 22440-22448.	2.8	1
18	Excited State Properties of Heteroleptic Cu(I) 4 <i>H</i> lmidazolate Complexes. Inorganic Chemistry, 2017, 56, 12978-12986.	4.0	16

#	Article	IF	CITATIONS
19	[FeFe]-Hydrogenase H-cluster mimics mediated by naphthalene monoimide derivatives of peri-substituted dichalcogenides. Dalton Transactions, 2017, 46, 11180-11191.	3.3	43