List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5251591/publications.pdf Version: 2024-02-01

ALLEN C CAO

#	Article	IF	CITATIONS
1	Circulating tumour DNA reveals genetic traits of patients with intraductal carcinoma of the prostate. BJU International, 2022, 129, 345-355.	1.3	18
2	Olaparib-Induced Senescence Is Bypassed through G2–M Checkpoint Override in Olaparib-Resistant Prostate Cancer. Molecular Cancer Therapeutics, 2022, 21, 677-685.	1.9	6
3	WLS-Wnt signaling promotes neuroendocrine prostate cancer. IScience, 2021, 24, 101970.	1.9	31
4	Phase Ib trial of reformulated niclosamide with abiraterone/prednisone in men with castration-resistant prostate cancer. Scientific Reports, 2021, 11, 6377.	1.6	38
5	Bidirectional Cross-talk between MAOA and AR Promotes Hormone-Dependent and Castration-Resistant Prostate Cancer. Cancer Research, 2021, 81, 4275-4289.	0.4	9
6	ARVib suppresses growth of advanced prostate cancer via inhibition of androgen receptor signaling. Oncogene, 2021, 40, 5379-5392.	2.6	16
7	Activation of the <i>ABCB1</i> Amplicon in Docetaxel- and Cabazitaxel-Resistant Prostate Cancer Cells. Molecular Cancer Therapeutics, 2021, 20, 2061-2070.	1.9	10
8	Dysregulated androgen synthesis and anti-androgen resistance in advanced prostate cancer. American Journal of Clinical and Experimental Urology, 2021, 9, 292-300.	0.4	0
9	The Androgen Receptor in Prostate Cancer: Effect of Structure, Ligands and Spliced Variants on Therapy. Biomedicines, 2020, 8, 422.	1.4	40
10	Steroid Sulfatase Stimulates Intracrine Androgen Synthesis and is a Therapeutic Target for Advanced Prostate Cancer. Clinical Cancer Research, 2020, 26, 6064-6074.	3.2	16
11	Therapeutic Targeting of MDR1 Expression by RORÎ ³ Antagonists Resensitizes Cross-Resistant CRPC to Taxane via Coordinated Induction of Cell Death Programs. Molecular Cancer Therapeutics, 2020, 19, 364-374.	1.9	18
12	Resistance mechanisms to taxanes and PARP inhibitors in advanced prostate cancer. Current Opinion in Endocrine and Metabolic Research, 2020, 10, 16-22.	0.6	8
13	Germline and somatic DNA repair gene alterations in prostate cancer. Cancer, 2020, 126, 2980-2985.	2.0	24
14	Cross-Resistance Among Next-Generation Antiandrogen Drugs Through the AKR1C3/AR-V7 Axis in Advanced Prostate Cancer. Molecular Cancer Therapeutics, 2020, 19, 1708-1718.	1.9	42
15	KDM8/JMJD5 as a dual coactivator of AR and PKM2 integrates AR/EZH2 network and tumor metabolism in CRPC. Oncogene, 2019, 38, 17-32.	2.6	77
16	AKR1C3 Promotes AR-V7 Protein Stabilization and Confers Resistance to AR-Targeted Therapies in Advanced Prostate Cancer. Molecular Cancer Therapeutics, 2019, 18, 1875-1886.	1.9	51
17	GnRH Antagonists Have Direct Inhibitory Effects On Castration-Resistant Prostate Cancer Via Intracrine Androgen and AR-V7 Expression. Molecular Cancer Therapeutics, 2019, 18, 1811-1821.	1.9	11
18	Current strategies for targeting the activity of androgen receptor variants. Asian Journal of Urology, 2019, 6, 42-49.	0.5	18

#	Article	IF	CITATIONS
19	Overexpressed ABCB1 Induces Olaparib-Taxane Cross-Resistance in Advanced Prostate Cancer. Translational Oncology, 2019, 12, 871-878.	1.7	22
20	A Circulating Tumor Cell-RNA Assay for Assessment of Androgen Receptor Signaling Inhibitor Sensitivity in Metastatic Castration-Resistant Prostate Cancer. Theranostics, 2019, 9, 2812-2826.	4.6	20
21	IFNγ, a Double-Edged Sword in Cancer Immunity and Metastasis. Cancer Research, 2019, 79, 1032-1033.	0.4	11
22	MEK-ERK signaling is a therapeutic target in metastatic castration resistant prostate cancer. Prostate Cancer and Prostatic Diseases, 2019, 22, 531-538.	2.0	66
23	In honor of Dr. Donald S. Coffey – Prostate cancer biology and therapy. Asian Journal of Urology, 2019, 6, 1-2.	0.5	Ο
24	Targeting cellular heterogeneity with CXCR2 blockade for the treatment of therapy-resistant prostate cancer. Science Translational Medicine, 2019, 11, .	5.8	63
25	Wntless promotes cellular viability and resistance to enzalutamide in castration-resistant prostate cancer cells. American Journal of Clinical and Experimental Urology, 2019, 7, 203-214.	0.4	6
26	Role of Androgen Receptor Variants in Prostate Cancer: Report from the 2017 Mission Androgen Receptor Variants Meeting. European Urology, 2018, 73, 715-723.	0.9	105
27	Proteostasis by STUB1/HSP70 complex controls sensitivity to androgen receptor targeted therapy in advanced prostate cancer. Nature Communications, 2018, 9, 4700.	5.8	71
28	What kind of patients with castration-naÃ ⁻ ve prostate cancer can benefit from upfront docetaxel and abiraterone: A systematic review and a network meta-analysis. Urologic Oncology: Seminars and Original Investigations, 2018, 36, 505-517.	0.8	11
29	Novel nomograms for castrationâ€resistant prostate cancer and survival outcome in patients with <i>de novo</i> bone metastatic prostate cancer. BJU International, 2018, 122, 994-1002.	1.3	16
30	Intra versus Inter Cross-resistance Determines Treatment Sequence between Taxane and AR-Targeting Therapies in Advanced Prostate Cancer. Molecular Cancer Therapeutics, 2018, 17, 2197-2205.	1.9	30
31	Niclosamide in combination with abiraterone and prednisone in men with castration-resistant prostate cancer (CRPC): initial results from a phase Ib/II trial Journal of Clinical Oncology, 2018, 36, 192-192.	0.8	8
32	Induction of neuroendocrine differentiation in castration resistant prostate cancer cells by adipocyte differentiation-related protein (ADRP) delivered by exosomes. Cancer Letters, 2017, 391, 74-82.	3.2	29
33	CCN3-EZH2-AR feedback loop: new targets for enzalutamide and castration resistant prostate cancer. Journal of Cell Communication and Signaling, 2017, 11, 89-91.	1.8	9
34	Niclosamide and Bicalutamide Combination Treatment Overcomes Enzalutamide- and Bicalutamide-Resistant Prostate Cancer. Molecular Cancer Therapeutics, 2017, 16, 1521-1530.	1.9	52
35	MicroRNAâ€181a promotes docetaxel resistance in prostate cancer cells. Prostate, 2017, 77, 1020-1028.	1.2	35
36	Androgen Receptor Regulation of Local Growth Hormone in Prostate Cancer Cells. Endocrinology, 2017, 158, 2255-2268.	1.4	22

#	Article	IF	CITATIONS
37	Quercetin Targets hnRNPA1 to Overcome Enzalutamide Resistance in Prostate Cancer Cells. Molecular Cancer Therapeutics, 2017, 16, 2770-2779.	1.9	81
38	ABCB1 Mediates Cabazitaxel–Docetaxel Cross-Resistance in Advanced Prostate Cancer. Molecular Cancer Therapeutics, 2017, 16, 2257-2266.	1.9	49
39	Concordance of Circulating Tumor DNA and Matched Metastatic Tissue Biopsy in Prostate Cancer. Journal of the National Cancer Institute, 2017, 109, .	3.0	288
40	Inhibition of AKR1C3 Activation Overcomes Resistance to Abiraterone in Advanced Prostate Cancer. Molecular Cancer Therapeutics, 2017, 16, 35-44.	1.9	100
41	Epigenomic Regulation of Androgen Receptor Signaling: Potential Role in Prostate Cancer Therapy. Cancers, 2017, 9, 9.	1.7	37
42	Niclosamide enhances abiraterone treatment via inhibition of androgen receptor variants in castration resistant prostate cancer. Oncotarget, 2016, 7, 32210-32220.	0.8	87
43	Lin28 induces resistance to antiâ€androgens via promotion of AR splice variant generation. Prostate, 2016, 76, 445-455.	1.2	20
44	Adaptive pathways and emerging strategies overcoming treatment resistance in castration resistant prostate cancer. Asian Journal of Urology, 2016, 3, 185-194.	0.5	20
45	ROR-Î ³ drives androgen receptor expression and represents a therapeutic target in castration-resistant prostate cancer. Nature Medicine, 2016, 22, 488-496.	15.2	155
46	Targeting molecular resistance in castration-resistant prostate cancer. BMC Medicine, 2015, 13, 206.	2.3	52
47	Niclosamide suppresses cell migration and invasion in enzalutamide resistant prostate cancer cells via Stat3-AR axis inhibition. Prostate, 2015, 75, 1341-1353.	1.2	87
48	Antiandrogens Inhibit ABCB1 Efflux and ATPase Activity and Reverse Docetaxel Resistance in Advanced Prostate Cancer. Clinical Cancer Research, 2015, 21, 4133-4142.	3.2	57
49	NF-κB2/p52:c-Myc:hnRNPA1 Pathway Regulates Expression of Androgen Receptor Splice Variants and Enzalutamide Sensitivity in Prostate Cancer. Molecular Cancer Therapeutics, 2015, 14, 1884-1895.	1.9	108
50	Intracrine Androgens and AKR1C3 Activation Confer Resistance to Enzalutamide in Prostate Cancer. Cancer Research, 2015, 75, 1413-1422.	0.4	207
51	Stat5a/b in Prostate Cancer Metastasis. American Journal of Pathology, 2015, 185, 2351-2353.	1.9	3
52	Mechanisms of resistance in castration-resistant prostate cancer (CRPC). Translational Andrology and Urology, 2015, 4, 365-80.	0.6	310
53	Drug resistance in castration resistant prostate cancer: resistance mechanisms and emerging treatment strategies. American Journal of Clinical and Experimental Urology, 2015, 3, 64-76.	0.4	49
54	Inhibition of constitutively active Stat3 reverses enzalutamide resistance in LNCaP derivative prostate cancer cells. Prostate, 2014, 74, 201-209.	1.2	83

#	Article	IF	CITATIONS
55	Enhanced anticancer activity of a combination of docetaxel and Aneustat (OMN54) in a patientâ€derived, advanced prostate cancer tissue xenograft model. Molecular Oncology, 2014, 8, 311-322.	2.1	28
56	Interleukinâ€6 induces neuroendocrine differentiation (NED) through suppression of REâ€1 silencing transcription factor (REST). Prostate, 2014, 74, 1086-1094.	1.2	62
57	Zoledronic acid at the time of castration prevented castration-induced bone metastasis in mice. Endocrine-Related Cancer, 2014, 21, C11-C14.	1.6	Ο
58	Upregulation of glucose metabolism by NF-κB2/p52 mediates enzalutamide resistance in castration-resistant prostate cancer cells. Endocrine-Related Cancer, 2014, 21, 435-442.	1.6	34
59	Niclosamide Inhibits Androgen Receptor Variants Expression and Overcomes Enzalutamide Resistance in Castration-Resistant Prostate Cancer. Clinical Cancer Research, 2014, 20, 3198-3210.	3.2	294
60	Developmental and androgenic regulation of chromatin regulators EZH2 and ANCCA/ATAD2 in the prostate Via MLL histone methylase complex. Prostate, 2013, 73, 455-466.	1.2	40
61	Inhibition of ABCB1 Expression Overcomes Acquired Docetaxel Resistance in Prostate Cancer. Molecular Cancer Therapeutics, 2013, 12, 1829-1836.	1.9	97
62	Lin28 Promotes Growth of Prostate Cancer Cells and Activates the Androgen Receptor. American Journal of Pathology, 2013, 183, 288-295.	1.9	29
63	NF-kappaB2/p52 in Prostate Cancer. , 2013, , 257-273.		Ο
64	NF-κB2/p52 Induces Resistance to Enzalutamide in Prostate Cancer: Role of Androgen Receptor and Its Variants. Molecular Cancer Therapeutics, 2013, 12, 1629-1637.	1.9	162
65	Functional p53 determines docetaxel sensitivity in prostate cancer cells. Prostate, 2013, 73, 418-427.	1.2	99
66	RhoGDIα downregulates androgen receptor signaling in prostate cancer cells. Prostate, 2013, 73, 1614-1622.	1.2	3
67	MicroRNA let-7c Suppresses Androgen Receptor Expression and Activity via Regulation of Myc Expression in Prostate Cancer Cells. Journal of Biological Chemistry, 2012, 287, 1527-1537.	1.6	171
68	Histone Methyltransferase NSD2/MMSET Mediates Constitutive NF-κB Signaling for Cancer Cell Proliferation, Survival, and Tumor Growth via a Feed-Forward Loop. Molecular and Cellular Biology, 2012, 32, 3121-3131.	1.1	123
69	MicroRNA let-7c Is Downregulated in Prostate Cancer and Suppresses Prostate Cancer Growth. PLoS ONE, 2012, 7, e32832.	1.1	163
70	Inhibition of Stat3 activation by sanguinarine suppresses prostate cancer cell growth and invasion. Prostate, 2012, 72, 82-89.	1.2	62
71	RhoGDlα suppresses growth and survival of prostate cancer cells. Prostate, 2012, 72, 392-398.	1.2	15
72	The interleukin 6 receptor is a direct transcriptional target of E2F3 in prostate tumor derived cells. Prostate, 2012, 72, 649-660.	1.2	17

#	Article	IF	CITATIONS
73	LNCaP prostate cancer cells with autocrine interleukinâ€6 expression are resistant to ILâ€6â€induced neuroendocrine differentiation due to increased expression of suppressors of cytokine signaling. Prostate, 2012, 72, 1306-1316.	1.2	31
74	Intracellular glutathione content influences the sensitivity of lung cancer cell lines to methylseleninic acid. Molecular Carcinogenesis, 2012, 51, 303-314.	1.3	26
75	Mechanisms of persistent activation of the androgen receptor in CRPC: recent advances and future perspectives. World Journal of Urology, 2012, 30, 287-295.	1.2	42
76	Andrographolide Targets Androgen Receptor Pathway in Castration-Resistant Prostate Cancer. Genes and Cancer, 2011, 2, 151-159.	0.6	32
77	A proteomic approach to elucidate the multiple targets of seleniumâ€induced cellâ€growth inhibition in human lung cancer. Thoracic Cancer, 2011, 2, 164-178.	0.8	2
78	Effects of Triclocarban on Intact Immature Male Rat: Augmentation of Androgen Action. Reproductive Sciences, 2011, 18, 119-127.	1.1	33
79	Microarray analysis reveals potential target genes of NFâ€₽̂B2/p52 in LNCaP prostate cancer cells. Prostate, 2010, 70, 276-287.	1.2	32
80	Aberrant Activation of the Androgen Receptor by NF-κB2/p52 in Prostate Cancer Cells. Cancer Research, 2010, 70, 3309-3319.	0.4	165
81	Effect of the Specific Src Family Kinase Inhibitor Saracatinib on Osteolytic Lesions Using the PC-3 Bone Model. Molecular Cancer Therapeutics, 2010, 9, 1629-1637.	1.9	52
82	Andrographolide, an Herbal Medicine, Inhibits Interleukin-6 Expression and Suppresses Prostate Cancer Cell Growth. Genes and Cancer, 2010, 1, 868-876.	0.6	64
83	Sanguinarine Suppresses Prostate Tumor Growth and Inhibits Survivin Expression. Genes and Cancer, 2010, 1, 283-292.	0.6	66
84	The Nâ€ŧerminal kinase suppressor of Ras complex has a weak nucleoside diphosphate kinase activity. Thoracic Cancer, 2010, 1, 109-115.	0.8	3
85	Interleukin-6 increases prostate cancer cells resistance to bicalutamide via TIF2. Molecular Cancer Therapeutics, 2009, 8, 665-671.	1.9	59
86	Interleukin-6 Regulates Androgen Synthesis in Prostate Cancer Cells. Clinical Cancer Research, 2009, 15, 4815-4822.	3.2	92
87	Molecular mechanisms of castration-resistant prostate cancer progression. Future Oncology, 2009, 5, 1403-1413.	1.1	100
88	Interleukinâ€4 activates androgen receptor through CBP/p300. Prostate, 2009, 69, 126-132.	1.2	29
89	Interleukin-4 stimulates androgen-independent growth in LNCaP human prostate cancer cells. Prostate, 2008, 68, 85-91.	1.2	38
90	NFâ€IºB2/p52 enhances androgenâ€independent growth of human LNCaP cells via protection from apoptotic cell death and cell cycle arrest induced by androgenâ€deprivation. Prostate, 2008, 68, 1725-1733.	1.2	45

#	Article	lF	CITATIONS
91	Mechanisms of selenium chemoprevention and therapy in prostate cancer. Molecular Nutrition and Food Research, 2008, 52, 1247-1260.	1.5	30
92	Transcriptional regulation of human RANK ligand gene expression by E2F1. Biochemical and Biophysical Research Communications, 2008, 370, 440-444.	1.0	6
93	Selenium inhibition of survivin expression by preventing Sp1 binding to its promoter. Molecular Cancer Therapeutics, 2007, 6, 2572-2580.	1.9	38
94	LIGHT, a member of the TNF superfamily, activates Stat3 mediated by NIK pathway. Biochemical and Biophysical Research Communications, 2007, 359, 379-384.	1.0	29
95	Interleukin-6 undergoes transition from growth inhibitor associated with neuroendocrine differentiation to stimulator accompanied by androgen receptor activation during LNCaP prostate cancer cell progression. Prostate, 2007, 67, 764-773.	1.2	85
96	Development of an androgen-deprivation induced and androgen suppressed human prostate cancer cell line. Prostate, 2007, 67, 1293-1300.	1.2	16
97	Mechanisms of selenium down-regulation of androgen receptor signaling in prostate cancer. Molecular Cancer Therapeutics, 2006, 5, 913-918.	1.9	42
98	Monomethylated selenium inhibits growth of LNCaP human prostate cancer xenograft accompanied by a decrease in the expression of androgen receptor and prostate-specific antigen (PSA). Prostate, 2006, 66, 1070-1075.	1.2	78
99	Prostate-Specific Antigen Modulates Genes Involved in Bone Remodeling and Induces Osteoblast Differentiation of Human Osteosarcoma Cell Line SaOS-2. Clinical Cancer Research, 2006, 12, 1420-1430.	3.2	48
100	Hypoxia Increases Androgen Receptor Activity in Prostate Cancer Cells. Cancer Research, 2006, 66, 5121-5129.	0.4	73
101	Stat3 activation of NF-ÂB p100 processing involves CBP/p300-mediated acetylation. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 7264-7269.	3.3	126
102	Selenium Disrupts Estrogen Signaling by Altering Estrogen Receptor Expression and Ligand Binding in Human Breast Cancer Cells. Cancer Research, 2005, 65, 3487-3492.	0.4	55
103	Frequent somatic mutations of the transcription factor ATBF1 in human prostate cancer. Nature Genetics, 2005, 37, 407-412.	9.4	156
104	Requirement for NF-κB in interleukin-4-induced androgen receptor activation in prostate cancer cells. Prostate, 2005, 64, 160-167.	1.2	58
105	Androgen receptor signaling intensity is a key factor in determining the sensitivity of prostate cancer cells to selenium inhibition of growth and cancer-specific biomarkers. Molecular Cancer Therapeutics, 2005, 4, 1047-1055.	1.9	67
106	Microarray Data Mining for Potential Selenium Targets in Chemoprevention of Prostate Cancer. Cancer Genomics and Proteomics, 2005, 2, 97-114.	1.0	23
107	Prostate Specific Antigen Expression Is Down-Regulated by Selenium through Disruption of Androgen Receptor Signaling. Cancer Research, 2004, 64, 19-22.	0.4	119
108	Stat3 activation regulates the expression of matrix metalloproteinase-2 and tumor invasion and metastasis. Oncogene, 2004, 23, 3550-3560.	2.6	487

#	Article	IF	CITATIONS
109	Interleukin-6 protects LNCaP cells from apoptosis induced by androgen deprivation through the Stat3 pathway. Prostate, 2004, 60, 178-186.	1.2	79
110	RNA interference targeting Stat3 inhibits growth and induces apoptosis of human prostate cancer cells. Prostate, 2004, 60, 303-309.	1.2	89
111	Defining regulatory elements in the humanKAI1 (CD 82) metastasis suppressor gene. Prostate, 2003, 57, 256-260.	1.2	16
112	Stat3 activation regulates the expression of vascular endothelial growth factor and human pancreatic cancer angiogenesis and metastasis. Oncogene, 2003, 22, 319-329.	2.6	510
113	Interleukin-4 enhances prostate-specific antigen expression by activation of the androgen receptor and Akt pathway. Oncogene, 2003, 22, 7981-7988.	2.6	61
114	Stat3 enhances transactivation of steroid hormone receptors. Nuclear Receptor, 2003, 1, 3.	10.0	66
115	Interleukin-6 promotes androgen-independent growth in LNCaP human prostate cancer cells. Clinical Cancer Research, 2003, 9, 370-6.	3.2	155
116	Selective Activation Of Members Of The Signal Transducers And Activators Of Transcription Family In Prostate Carcinoma. Journal of Urology, 2002, 167, 1859-1862.	0.2	64
117	Stat3 activation in prostatic carcinomas. Prostate, 2002, 51, 241-246.	1.2	132
118	Stat3 enhances the growth of LNCaP human prostate cancer cells in intact and castrated male nude mice. Prostate, 2002, 52, 123-129.	1.2	47
119	STAT Signaling and Cell Function. Current Genomics, 2002, 3, 413-423.	0.7	0
120	Interleukin-6 induces prostate cancer cell growth accompanied by activation of Stat3 signaling pathway. Prostate, 2000, 42, 239-242.	1.2	228
121	The Roles of Homeobox Genes in Prostate Cancer. Prostate Journal, 1999, 1, 61-67.	0.2	Ο
122	Suppression of the tumorigenicity of prostatic cancer cells by gene(s) located on human chromosome 19p13.1-13.2. , 1999, 38, 46-54.		40
123	Expression of homeobox gene-GBX2 in human prostatic cancer cells. , 1996, 29, 395-398.		16