
Daniel J Powell Jr

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5251583/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cooperation between Constitutive and Inducible Chemokines Enables T Cell Engraftment and Immune Attack in Solid Tumors. Cancer Cell, 2019, 35, 885-900.e10.	16.8	475
2	Expression of a Functional CCR2 Receptor Enhances Tumor Localization and Tumor Eradication by Retargeted Human T cells Expressing a Mesothelin-Specific Chimeric Antibody Receptor. Clinical Cancer Research, 2011, 17, 4719-4730.	7.0	441
3	Personalized cancer vaccine effectively mobilizes antitumor T cell immunity in ovarian cancer. Science Translational Medicine, 2018, 10, .	12.4	326
4	CD27 costimulation augments the survival and antitumor activity of redirected human T cells in vivo. Blood, 2012, 119, 696-706.	1.4	296
5	A Universal Strategy for Adoptive Immunotherapy of Cancer through Use of a Novel T-cell Antigen Receptor. Cancer Research, 2012, 72, 1844-1852.	0.9	264
6	Tumor infiltrating lymphocytes in ovarian cancer. Cancer Biology and Therapy, 2015, 16, 807-820.	3.4	257
7	<i>In Vivo</i> Persistence, Tumor Localization, and Antitumor Activity of CAR-Engineered T Cells Is Enhanced by Costimulatory Signaling through CD137 (4-1BB). Cancer Research, 2011, 71, 4617-4627.	0.9	256
8	CD137 Accurately Identifies and Enriches for Naturally Occurring Tumor-Reactive T Cells in Tumor. Clinical Cancer Research, 2014, 20, 44-55.	7.0	241
9	Randomized Phase II Trial of Nivolumab Versus Nivolumab and Ipilimumab for Recurrent or Persistent Ovarian Cancer: An NRG Oncology Study. Journal of Clinical Oncology, 2020, 38, 1814-1823.	1.6	202
10	A Dendritic Cell Vaccine Pulsed with Autologous Hypochlorous Acid-Oxidized Ovarian Cancer Lysate Primes Effective Broad Antitumor Immunity: From Bench to Bedside. Clinical Cancer Research, 2013, 19, 4801-4815.	7.0	178
11	CAR-T Cells Hit the Tumor Microenvironment: Strategies to Overcome Tumor Escape. Frontiers in Immunology, 2020, 11, 1109.	4.8	165
12	Redirected Antitumor Activity of Primary Human Lymphocytes Transduced With a Fully Human Anti-mesothelin Chimeric Receptor. Molecular Therapy, 2012, 20, 633-643.	8.2	161
13	Targeting of folate receptor β on acute myeloid leukemia blasts with chimeric antigen receptor–expressing T cells. Blood, 2015, 125, 3466-3476.	1.4	148
14	CAR-T cell-mediated depletion of immunosuppressive tumor-associated macrophages promotes endogenous antitumor immunity and augments adoptive immunotherapy. Nature Communications, 2021, 12, 877.	12.8	143
15	Feasibility and Safety of RNA-transfected CD20-specific Chimeric Antigen Receptor T Cells in Dogs with Spontaneous B Cell Lymphoma. Molecular Therapy, 2016, 24, 1602-1614.	8.2	101
16	Effective adoptive immunotherapy of triple-negative breast cancer by folate receptor-alpha redirected CAR T cells is influenced by surface antigen expression level. Journal of Hematology and Oncology, 2016, 9, 56.	17.0	97
17	A phase I clinical trial of adoptive transfer of folate receptor-alpha redirected autologous T cells for recurrent ovarian cancer. Journal of Translational Medicine, 2012, 10, 157.	4.4	95
18	Systematic evaluation of multiple immune markers reveals prognostic factors in ovarian cancer. Gynecologic Oncology, 2016, 143, 120-127.	1.4	90

DANIEL J POWELL JR

#	Article	IF	CITATIONS
19	Chimeric NKG2D CAR-Expressing T Cell-Mediated Attack of Human Ovarian Cancer Is Enhanced by Histone Deacetylase Inhibition. Human Gene Therapy, 2013, 24, 295-305.	2.7	87
20	T Cells Bearing a Chimeric Antigen Receptor against Prostate-Specific Membrane Antigen Mediate Vascular Disruption and Result in Tumor Regression. Cancer Immunology Research, 2015, 3, 68-84.	3.4	84
21	A fully human chimeric antigen receptor with potent activity against cancer cells but reduced risk for off-tumor toxicity. Oncotarget, 2015, 6, 21533-21546.	1.8	76
22	Control of triple-negative breast cancer using ex vivo self-enriched, costimulated NKG2D CAR T cells. Journal of Hematology and Oncology, 2018, 11, 92.	17.0	69
23	NKC2D-CAR-transduced natural killer cells efficiently target multiple myeloma. Blood Cancer Journal, 2021, 11, 146.	6.2	67
24	The Emergence of Universal Immune Receptor T Cell Therapy for Cancer. Frontiers in Oncology, 2019, 9, 176.	2.8	64
25	Myeloid antigen-presenting cell niches sustain antitumor TÂcells and license PD-1 blockade via CD28 costimulation. Cancer Cell, 2021, 39, 1623-1642.e20.	16.8	64
26	Primary Human Ovarian Epithelial Cancer Cells Broadly Express HER2 at Immunologically-Detectable Levels. PLoS ONE, 2012, 7, e49829.	2.5	60
27	Engineering-enhanced CAR T cells for improved cancer therapy. Nature Cancer, 2021, 2, 780-793.	13.2	60
28	Biochemical and functional characterization of mutant KRAS epitopes validates this oncoprotein for immunological targeting. Nature Communications, 2021, 12, 4365.	12.8	53
29	Engineered artificial antigen presenting cells facilitate direct and efficient expansion of tumor infiltrating lymphocytes. Journal of Translational Medicine, 2011, 9, 131.	4.4	52
30	Pro-survival signaling via CD27 costimulation drives effective CAR T-cell therapy. OncoImmunology, 2012, 1, 547-549.	4.6	49
31	B7-H4 as a potential target for immunotherapy for gynecologic cancers: A closer look. Gynecologic Oncology, 2014, 134, 181-189.	1.4	45
32	Rigorous optimization and validation of potent RNA CAR T cell therapy for the treatment of common epithelial cancers expressing folate receptor. Oncotarget, 2015, 6, 28911-28928.	1.8	45
33	Efficient clinical-scale enrichment of lymphocytes for use in adoptive immunotherapy using a modified counterflow centrifugal elutriation program. Cytotherapy, 2009, 11, 923-935.	0.7	43
34	Critical questions in ovarian cancer research and treatment: Report of an American Association for Cancer Research Special Conference. Cancer, 2019, 125, 1963-1972.	4.1	39
35	Tumor Regression and Delayed Onset Toxicity Following B7-H4 CAR T Cell Therapy. Molecular Therapy, 2016, 24, 1987-1999.	8.2	38
36	An autologous humanized patient-derived-xenograft platform to evaluate immunotherapy in ovarian cancer. Gynecologic Oncology, 2020, 156, 222-232.	1.4	37

DANIEL J POWELL JR

#	Article	IF	CITATIONS
37	Quantitative Control of Gene-Engineered T-Cell Activity through the Covalent Attachment of Targeting Ligands to a Universal Immune Receptor. Journal of the American Chemical Society, 2020, 142, 6554-6568.	13.7	36
38	The Impact of Chemotherapy, Radiation and Epigenetic Modifiers in Cancer Cell Expression of Immune Inhibitory and Stimulatory Molecules and Anti-Tumor Efficacy. Vaccines, 2016, 4, 43.	4.4	35
39	Mannose Receptor (MR) Engagement by Mesothelin GPI Anchor Polarizes Tumor-Associated Macrophages and Is Blocked by Anti-MR Human Recombinant Antibody. PLoS ONE, 2011, 6, e28386.	2.5	34
40	Follicle-Stimulating Hormone Receptor as a Target in the Redirected T-cell Therapy for Cancer. Cancer Immunology Research, 2015, 3, 1130-1137.	3.4	33
41	IL-21 in cancer immunotherapy. Oncolmmunology, 2013, 2, e24522.	4.6	32
42	Targeted cancer immunotherapy via combination of designer bispecific antibody and novel gene-engineered T cells. Journal of Translational Medicine, 2014, 12, 347.	4.4	32
43	Multiparameter comparative analysis reveals differential impacts of various cytokines on CART cell phenotype and function <i>ex vivo</i> and <i>in vivo</i> . Oncotarget, 2016, 7, 82354-82368.	1.8	31
44	<i>BRCA</i> Mutations, Homologous DNA Repair Deficiency, Tumor Mutational Burden, and Response to Immune Checkpoint Inhibition in Recurrent Ovarian Cancer. JCO Precision Oncology, 2020, 4, 665-679.	3.0	29
45	CD4+ T-Helper Type 1 Cytokines and Trastuzumab Facilitate CD8+ T-cell Targeting of HER2/ <i>neu</i> –Expressing Cancers. Cancer Immunology Research, 2015, 3, 455-463.	3.4	27
46	Personalized cancer vaccine strategy elicits polyfunctional T cells and demonstrates clinical benefits in ovarian cancer. Npj Vaccines, 2021, 6, 36.	6.0	27
47	Systematic analysis of CD39, CD103, CD137, and PDâ€1 as biomarkers for naturally occurring tumor antigenâ€specific TILs. European Journal of Immunology, 2022, 52, 96-108.	2.9	26
48	T-cell target antigens across major gynecologic cancers. Gynecologic Oncology, 2017, 145, 426-435.	1.4	24
49	CAR T Cells Targeting MISIIR for the Treatment of Ovarian Cancer and Other Gynecologic Malignancies. Molecular Therapy, 2020, 28, 548-560.	8.2	23
50	Epigenetic state determines inflammatory sensing in neuroblastoma. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	21
51	PARP Theranostic Auger Emitters Are Cytotoxic in BRCA Mutant Ovarian Cancer and Viable Tumors from Ovarian Cancer Patients Enable Ex-Vivo Screening of Tumor Response. Molecules, 2020, 25, 6029.	3.8	20
52	NKG2D-CAR Transduced Primary Natural Killer Cells Efficiently Target Multiple Myeloma Cells. Blood, 2018, 132, 590-590.	1.4	20
53	Strain-dependent Lethal Toxicity in NKG2D Ligand-targeted CAR T-cell Therapy. Molecular Therapy, 2015, 23, 1559-1561.	8.2	13
54	Dichotomous impact of affinity on the function of T cell engaging bispecific antibodies. , 2021, 9,		12

e002444.

DANIEL J POWELL JR

#	Article	IF	CITATIONS
55	Folate Receptor Beta as a Direct and Indirect Target for Antibody-Based Cancer Immunotherapy. International Journal of Molecular Sciences, 2021, 22, 5572.	4.1	11
56	Finding a needle in a haystack. Oncolmmunology, 2013, 2, e27184.	4.6	9
57	Advances and prospects in adoptive cell transfer therapy for ovarian cancer. Immunotherapy, 2015, 7, 473-476.	2.0	5
58	<i>PTEN</i> Loss and <i>BRCA1</i> Promoter Hypermethylation Negatively Predict for Immunogenicity in BRCA-Deficient Ovarian Cancer. JCO Precision Oncology, 2022, 6, e2100159.	3.0	4
59	Humanized Patient-Derived Xenograft Models of Ovarian Cancer. Methods in Molecular Biology, 2022, 2424, 255-274.	0.9	3
60	A Novel Approach for the Treatment of T Cell Malignancies: Targeting T Cell Receptor Vβ Families. Vaccines, 2020, 8, 631.	4.4	2
61	NKG2D CAR-Expressing Lymphocytes Target Acute Myeloid Leukemia Cells. Blood, 2019, 134, 2667-2667.	1.4	1
62	Of mice and men: pre-clinical models to identify therapy responsive patient subgroups. Gynecology and Pelvic Medicine, 0, 3, 13-13.	0.1	1
63	Induction of <i>IL19</i> expression through JNK and cGAS-STING modulates DNA damage–induced cytokine production. Science Signaling, 2021, 14, eaba2611.	3.6	1