David D Lo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5249736/publications.pdf Version: 2024-02-01

108 papers	8,236 citations	57758 44 h-index	46799 89 g-index
111	111	111	6430
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	The drying Salton Sea and asthma: A perspective on a "natural―disaster. California Agriculture, 2022, 76, 27-36.	0.8	4
2	Salton Sea aerosol exposure in mice induces a pulmonary response distinct from allergic inflammation. Science of the Total Environment, 2021, 792, 148450.	8.0	8
3	Selective Targeting of Tumour Necrosis Factor Receptor 1 Induces Stable Protection from Crohn's-Like Ileitis in TNFΔARE Mice. Journal of Crohn's and Colitis, 2021, , .	1.3	0
4	Intravital Multiphoton Examination of Implant-Associated Staphylococcus aureus Biofilm Infection. Frontiers in Cellular and Infection Microbiology, 2020, 10, 574092.	3.9	9
5	Acute Immune Response of Micro- and Nanosized Erythrocyte-Derived Optical Particles in Healthy Mice. Molecular Pharmaceutics, 2020, 17, 3900-3914.	4.6	6
6	Novel Mechanical Strain Characterization of Ventilated ex vivo Porcine and Murine Lung using Digital Image Correlation. Frontiers in Physiology, 2020, 11, 600492.	2.8	22
7	Chronic Inflammation in Mucosal Tissues: Barrier Integrity, Inducible Lymphoid Tissues, and Immune Surveillance. Current Topics in Microbiology and Immunology, 2020, 426, 45-63.	1.1	1
8	A randomized trial of a lab-embedded discourse intervention to improve research ethics. Proceedings of the United States of America, 2020, 117, 1389-1394.	7.1	13
9	M Cells: Intelligent Engineering of Mucosal Immune Surveillance. Frontiers in Immunology, 2019, 10, 1499.	4.8	115
10	Crosslinked flagella as a stabilized vaccine adjuvant scaffold. BMC Biotechnology, 2019, 19, 48.	3.3	6
11	Establishment and characterization of a multi-purpose large animal exposure chamber for investigating health effects. Review of Scientific Instruments, 2019, 90, 035115.	1.3	6
12	Vigilance or Subversion? Constitutive and Inducible M Cells in Mucosal Tissues. Trends in Immunology, 2018, 39, 185-195.	6.8	27
13	Hematopoietic cell-derived RELMα regulates hookworm immunity through effects on macrophages. Journal of Leukocyte Biology, 2018, 104, 855-869.	3.3	21
14	Continuous Inhalation Exposure to Fungal Allergen Particulates Induces Lung Inflammation While Reducing Innate Immune Molecule Expression in the Brainstem. ASN Neuro, 2018, 10, 175909141878230.	2.7	13
15	Protein–Nanoparticle Hydrogels That Self-assemble in Response to Peptide-Based Molecular Recognition. ACS Biomaterials Science and Engineering, 2017, 3, 750-756.	5.2	22
16	Inducible Colonic M Cells Are Dependent on TNFR2 but Not Ltβr, Identifying Distinct Signalling Requirements for Constitutive Versus Inducible M Cells. Journal of Crohn's and Colitis, 2016, 11, jjw212.	1.3	10
17	Molecular Mechanism of Biased Ligand Conformational Changes in CC Chemokine Receptor 7. Journal of Chemical Information and Modeling, 2016, 56, 1808-1822.	5.4	13
18	Induction of Colonic M Cells during Intestinal Inflammation. American Journal of Pathology, 2016, 186, 1166-1179.	3.8	41

DAVID D LO

#	Article	IF	CITATIONS
19	M cell-derived vesicles suggest a unique pathway for trans-epithelial antigen delivery. Tissue Barriers, 2015, 3, e1004975.	3.2	33
20	Hybrid flagellin as a T cell independent vaccine scaffold. BMC Biotechnology, 2015, 15, 71.	3.3	20
21	CD137 signaling enhances tight junction resistance in intestinal epithelial cells. Physiological Reports, 2014, 2, e12090.	1.7	7
22	Epithelial Microvilli Establish an Electrostatic Barrier to Microbial Adhesion. Infection and Immunity, 2014, 82, 2860-2871.	2.2	40
23	Mucosal vaccine delivery: is M cell-targeted delivery effective in the mucosal lumen?. Expert Opinion on Drug Delivery, 2013, 10, 157-161.	5.0	3
24	Jagged1 and Notch1 help edit M cell patterning in Peyer's patch follicle epithelium. Developmental and Comparative Immunology, 2012, 37, 306-312.	2.3	18
25	Mucosal Vaccine Design and Delivery. Annual Review of Biomedical Engineering, 2012, 14, 17-46.	12.3	182
26	M cell targeting by a Claudin 4 targeting peptide can enhance mucosal IgA responses. BMC Biotechnology, 2012, 12, 7.	3.3	49
27	CNS-derived CCL21 is both sufficient to drive homeostatic CD4+ T cell proliferation and necessary for efficient CD4+ T cell migration into the CNS parenchyma following Toxoplasma gondii infection. Brain, Behavior, and Immunity, 2011, 25, 883-896.	4.1	49
28	A New Generation of Potent Complement Inhibitors of the Compstatin Family. Chemical Biology and Drug Design, 2011, 77, 431-440.	3.2	14
29	Convergent and Divergent Development among M Cell Lineages in Mouse Mucosal Epithelium. Journal of Immunology, 2011, 187, 5277-5285.	0.8	67
30	Claudin 4-targeted protein incorporated into PLGA nanoparticles can mediate M cell targeted delivery. Journal of Controlled Release, 2010, 142, 196-205.	9.9	122
31	Intranasal M Cell Uptake of Nanoparticles Is Independently Influenced by Targeting Ligands and Buffer Ionic Strength. Journal of Biological Chemistry, 2010, 285, 23739-23746.	3.4	45
32	Microencapsulation of Vaccine Antigens and Adjuvants for Mucosal Targeting. Current Immunology Reviews, 2010, 6, 29-37.	1.2	26
33	CD137 Is Required for M Cell Functional Maturation but Not Lineage Commitment. American Journal of Pathology, 2010, 177, 666-676.	3.8	34
34	Induction and effector phase of allergic lung inflammation is independent of CCL21/CCL19 and LT-beta. International Journal of Medical Sciences, 2009, 6, 85-92.	2.5	7
35	Bacterial Particle Endocytosis by Epithelial Cells Is Selective and Enhanced by Tumor Necrosis Factor Receptor Ligands. Vaccine Journal, 2009, 16, 397-407.	3.1	13
36	TNFR and LTβR agonists induce follicle-associated epithelium and M cell specific genes in rat and human intestinal epithelial cells. Cytokine, 2009, 47, 69-76.	3.2	33

David D Lo

#	Article	IF	CITATIONS
37	Structural Constraints for the Binding of Short Peptides to Claudin-4 Revealed by Surface Plasmon Resonance. Journal of Biological Chemistry, 2008, 283, 30585-30595.	3.4	59
38	CCR7 Signaling Promotes T Cell Survival and Proliferation. FASEB Journal, 2008, 22, 385-385.	0.5	1
39	Perspective is everything: An irreverent discussion of CNS–immune system interactions as viewed from different scientific traditions. Brain, Behavior, and Immunity, 2007, 21, 367-373.	4.1	13
40	Quantitative analysis of T cell homeostatic proliferation. Cellular Immunology, 2007, 250, 40-54.	3.0	31
41	A role for the transcription factor RelB in IFN-α production and in IFN-α-stimulated cross-priming. European Journal of Immunology, 2006, 36, 2085-2093.	2.9	17
42	Necdin and E2F4 Are Modulated by Rosiglitazone Therapy in Diabetic Human Adipose and Muscle Tissue. Diabetes, 2006, 55, 640-650.	0.6	23
43	Expression Profiling and QTL Analysis: a Powerful Complementary Strategy in Drug Abuse Research. Addiction Biology, 2005, 10, 47-51.	2.6	20
44	Exploiting immune surveillance mechanisms in mucosal vaccine development. Expert Opinion on Biological Therapy, 2004, 4, 397-406.	3.1	0
45	Cell culture modeling of specialized tissue: identification of genes expressed specifically by follicle-associated epithelium of Peyer's patch by expression profiling of Caco-2/Raji co-cultures. International Immunology, 2004, 16, 91-99.	4.0	77
46	T-Cell Receptor Transgenic Response to an Endogenous Polymorphic Autoantigen Determines Susceptibility to Diabetes. Diabetes, 2004, 53, 978-988.	0.6	36
47	Standardized quantitative in situ hybridization using radioactive oligonucleotide probes for detecting relative levels of mRNA transcripts verified by real-time PCR. Brain Research, 2004, 1000, 211-222.	2.2	13
48	Analysis of Microglial Gene Expression. Molecular Diagnosis and Therapy, 2004, 4, 321-330.	3.3	29
49	Peptidoglycan recognition protein expression in mouse Peyer's Patch follicle associated epithelium suggests functional specialization. Cellular Immunology, 2003, 224, 8-16.	3.0	67
50	NIK-dependent RelB Activation Defines a Unique Signaling Pathway for the Development of Vα14i NKT Cells. Journal of Experimental Medicine, 2003, 197, 1623-1633.	8.5	115
51	Antigen presentation by keratinocytes directs autoimmune skin disease. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 3386-3391.	7.1	39
52	CD4 T cell priming in dendritic cell-deficient mice. International Immunology, 2003, 15, 127-136.	4.0	19
53	CD8α+ and CD11b+ Dendritic Cell-Restricted MHC Class II Controls Th1 CD4+ T Cell Immunity. Journal of Immunology, 2003, 171, 5077-5084.	0.8	43
54	Open system gene expression profiling and identification of novel genes for targeted vaccine delivery. Expert Review of Vaccines, 2002, 1, 95-100.	4.4	1

DAVID D LO

#	Article	IF	CITATIONS
55	Lymphotoxin-α- and Lymphotoxin-β-Deficient Mice Differ in Susceptibility to Scrapie: Evidence against Dendritic Cell Involvement in Neuroinvasion. Journal of Virology, 2002, 76, 4357-4363.	3.4	47
56	Catching target receptors for drug and vaccine delivery using TOGA® gene expression profiling. Advanced Drug Delivery Reviews, 2002, 54, 1213-1223.	13.7	11
57	TOGA analysis of gene expression to accelerate target development. European Journal of Pharmaceutical Sciences, 2001, 14, 191-196.	4.0	13
58	Defective CD8+ T Cell Peripheral Tolerance in Nonobese Diabetic Mice. Journal of Immunology, 2001, 167, 1112-1117.	0.8	50
59	A Ligand for the Chemokine Receptor CCR7 Can Influence the Homeostatic Proliferation of CD4 T Cells and Progression of Autoimmunity. Journal of Immunology, 2001, 167, 6724-6730.	0.8	97
60	IMMUNOLOGY: The Push-Me Pull-You of T Cell Activation. Science, 2001, 293, 618-619.	12.6	49
61	Immune Regulation: Susceptibility and Resistance to Autoimmunity. Immunologic Research, 2000, 21, 239-246.	2.9	4
62	Transgenic Expression of Ly-49A in Thymocytes Alters Repertoire Selection. Journal of Immunology, 2000, 164, 884-892.	0.8	32
63	Cutting Edge: Ectopic Expression of the Chemokine TCA4/SLC Is Sufficient to Trigger Lymphoid Neogenesis. Journal of Immunology, 2000, 164, 3955-3959.	0.8	179
64	Enhancement by vasoactive intestinal peptide of γâ€interferon production by antigenâ€stimulated type 1 helper T cells. FASEB Journal, 1999, 13, 347-353.	0.5	24
65	Integrating innate and adaptive immunity in the whole animal. Immunological Reviews, 1999, 169, 225-239.	6.0	89
66	Prostaglandin E2 Enhancement of Interferon-γ Production by Antigen-Stimulated Type 1 Helper T Cells. Cellular Immunology, 1999, 194, 21-27.	3.0	27
67	Disproportionate Recruitment of CD8+ T Cells into the Central Nervous System by Professional Antigen-Presenting Cells. American Journal of Pathology, 1999, 154, 481-494.	3.8	102
68	Using thymus anatomy to dissect T cell repertoire selection. Seminars in Immunology, 1999, 11, 65-70.	5.6	52
69	RelB Modulation of ll°Bα Stability as a Mechanism of Transcription Suppression of Interleukin-1α (IL-1α), IL-1β, and Tumor Necrosis Factor Alpha in Fibroblasts. Molecular and Cellular Biology, 1999, 19, 7688-7696.	2.3	69
70	The Density of the Class II MHC T Cell Receptor Ligand Influences IFN-Î ³ /IL-4 Ratios in Immune Responsesin Vivo. Cellular Immunology, 1998, 183, 70-79.	3.0	23
71	Protection against Diabetes by MHC Heterozygosity and Reversal by Cyclophosphamide. Cellular Immunology, 1998, 184, 112-120.	3.0	10
72	Thymic skewing of the CD4/CD8 ratio maps with the T-cell receptor α-chain locus. Current Biology, 1998, 8, 701-S3.	3.9	49

DAVID D LO

#	Article	IF	CITATIONS
73	DNA immunization inrelB-deficient mice discloses a role for dendritic cells in IgM  →   IgG1 swite European Journal of Immunology, 1998, 28, 516-524.	chin vivo. 2.9	25
74	Immunological memory after somatic transgene immunization is positively affected by priming with GM-CSF and does not require bone marrow- derived dendritic cells. European Journal of Immunology, 1998, 28, 1832-1838.	2.9	18
75	Mature microglia resemble immature antigen-presenting cells. Glia, 1998, 22, 72-85.	4.9	295
76	RelB Is Essential for the Development of Myeloid-Related CD8αâ^' Dendritic Cells but Not of Lymphoid-Related CD8α+ Dendritic Cells. Immunity, 1998, 9, 839-847.	14.3	414
77	c-maf Promotes T Helper Cell Type 2 (Th2) and Attenuates Th1 Differentiation by Both Interleukin 4–dependent and –independent Mechanisms. Journal of Experimental Medicine, 1998, 188, 1859-1866.	8.5	278
78	In Vivo Inhibition of CC and CX3C Chemokine–induced Leukocyte Infiltration and Attenuation of Glomerulonephritis in Wistar-Kyoto (WKY) Rats by vMIP-II. Journal of Experimental Medicine, 1998, 188, 193-198.	8.5	240
79	Thymic stromal cell specialization and the T-cell receptor repertoire. Immunologic Research, 1997, 16, 3-14.	2.9	45
80	Thymocytes and RelB-dependent medullary epithelial cells provide growth-promoting and organization signals, respectively, to thymic medullary stromal cells. European Journal of Immunology, 1997, 27, 1392-1397.	2.9	43
81	ANIMAL MODELS OF HUMAN DISEASE. Transgenic and Knockout Models of Autoimmunity: Building a Better Disease?. Clinical Immunology and Immunopathology, 1996, 79, 96-104.	2.0	8
82	Unopposed positive selection and autoreactivity in mice expressing class II MHC only on thymic cortex. Nature, 1996, 383, 81-85.	27.8	355
83	Expression of relB is required for the development of thymic medulla and dendritic cells. Nature, 1995, 373, 531-536.	27.8	723
84	Transgenic mice expressing MHC class II molecules with truncated AÎ ² cytoplasmic domains reveal signaling-independent defects in antigen presentation. International Immunology, 1995, 7, 665-677.	4.0	19
85	Potent effects of low levels of MHC class II-associated invariant chain on CD4+ T cell development. Immunity, 1995, 3, 359-372.	14.3	46
86	Regulation of CD4 T Cell Reactivity to Self and Non-Self. International Reviews of Immunology, 1995, 13, 147-160.	3.3	13
87	On the various manifestations of spontaneous autoimmune diabetes in rodent models. European Journal of Immunology, 1994, 24, 3155-3160.	2.9	52
88	Discrimination between thymic epithelial cells and peripheral antigen-presenting cells in the induction of immature T cell differentiation. Immunity, 1994, 1, 385-391.	14.3	17
89	A role for non-MHC genetic polymorphism in susceptibility to spontaneous autoimmunity. Immunity, 1994, 1, 73-82.	14.3	342
90	Antigen-presenting cells in adoptively transferred and spontaneous autoimmune diabetes. European Journal of Immunology, 1993, 23, 1693-1698.	2.9	95

David D Lo

#	Article	IF	CITATIONS
91	T-cell tolerance. Current Opinion in Immunology, 1992, 4, 711-715.	5.5	15
92	Peripheral tolerance to an islet cell-specific hemagglutinin transgene affects both CD4+ and CD8+ T cells. European Journal of Immunology, 1992, 22, 1013-1022.	2.9	228
93	Among naive precursor cell subpopulations only progenitors of memory B cells originate germinal centers. European Journal of Immunology, 1992, 22, 1293-1297.	2.9	72
94	Peripheral Tolerance in Transgenic Mice: Tolerance to Class II MHC and non-MHC Transgene Antigens. Immunological Reviews, 1991, 122, 87-102.	6.0	34
95	Expression of mouse IgA by transgenic mice, pigs and sheep. European Journal of Immunology, 1991, 21, 1001-1006.	2.9	83
96	Antigen Presentation in MHC Class II Transgenic Mice: Stimulation versus Tolerization. Immunological Reviews, 1990, 117, 121-134.	6.0	15
97	I-E transgenic mice: A model system to dissect the regulation and function of MHC class II genes in vivo. Immunologic Research, 1990, 9, 34-46.	2.9	6
98	Infertility in Male Transgenic Mice: Disruption of Sperm Development by HSV-tk Expression in Postmeiotic Germ Cells1. Biology of Reproduction, 1990, 43, 684-693.	2.7	105
99	A novel MHC class II epitope expressed in thymic medulla but not cortex. Nature, 1989, 338, 765-768.	27.8	168
100	T-cell tolerance by clonal anergy in transgenic mice with nonlymphoid expression of MHC class II l–E. Nature, 1989, 342, 564-566.	27.8	225
101	Abnormal differentiation of thymocytes in mice treated with cyclosporin A. Nature, 1988, 336, 176-179.	27.8	280
102	Antigen presenting function of class II MHC expressing pancreatic beta cells. Nature, 1988, 336, 476-479.	27.8	242
103	Expression of Immunoglobulin Genes in Transgenic Mice and Transfected Cells. Annals of the New York Academy of Sciences, 1988, 546, 51-56.	3.8	12
104	The effect of thymus environment on T cell development and tolerance. Cell, 1988, 53, 627-634.	28.9	316
105	Diabetes and tolerance in transgenic mice expressing class II MHC molecules in pancreatic beta cells. Cell, 1988, 53, 159-168.	28.9	350
106	Identity of cells that imprint H–2-restricted T-cell specificity in the thymus. Nature, 1986, 319, 672-675.	27.8	264
107	Functions of Purified L3T4+ and Lyt-2+ Cells in vitro and in vivo. Immunological Reviews, 1986, 91, 195-218.	6.0	86
108	Induction of MHC-restricted specificity and tolerance in the thymus. Immunologic Research, 1986, 5, 221-232.	2.9	78