
Philippe P Roux

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5249286/publications.pdf Version: 2024-02-01

PHILIDDE P POLIX

#	Article	IF	CITATIONS
1	Activation and Function of the MAPKs and Their Substrates, the MAPK-Activated Protein Kinases. Microbiology and Molecular Biology Reviews, 2011, 75, 50-83.	2.9	2,328
2	ERK and p38 MAPK-Activated Protein Kinases: a Family of Protein Kinases with Diverse Biological Functions. Microbiology and Molecular Biology Reviews, 2004, 68, 320-344.	2.9	2,059
3	Tuberous Sclerosis Complex Gene Products, Tuberin and Hamartin, Control mTOR Signaling by Acting as a GTPase-Activating Protein Complex toward Rheb. Current Biology, 2003, 13, 1259-1268.	1.8	1,047
4	Rapamycin differentially inhibits S6Ks and 4E-BP1 to mediate cell-type-specific repression of mRNA translation. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 17414-17419.	3.3	716
5	Tumor-promoting phorbol esters and activated Ras inactivate the tuberous sclerosis tumor suppressor complex via p90 ribosomal S6 kinase. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 13489-13494.	3.3	661
6	Neurotrophin signaling through the p75 neurotrophin receptor. Progress in Neurobiology, 2002, 67, 203-233.	2.8	639
7	RAS/ERK Signaling Promotes Site-specific Ribosomal Protein S6 Phosphorylation via RSK and Stimulates Cap-dependent Translation. Journal of Biological Chemistry, 2007, 282, 14056-14064.	1.6	627
8	The mTOR/PI3K and MAPK pathways converge on elF4B to control its phosphorylation and activity. EMBO Journal, 2006, 25, 2781-2791.	3.5	459
9	mTORC1-Activated S6K1 Phosphorylates Rictor on Threonine 1135 and Regulates mTORC2 Signaling. Molecular and Cellular Biology, 2010, 30, 908-921.	1.1	365
10	Regulation and function of the RSK family of protein kinases. Biochemical Journal, 2012, 441, 553-569.	1.7	326
11	Actin cortex architecture regulates cell surface tension. Nature Cell Biology, 2017, 19, 689-697.	4.6	325
12	Oncogenic MAPK Signaling Stimulates mTORC1 Activity by Promoting RSK-Mediated Raptor Phosphorylation. Current Biology, 2008, 18, 1269-1277.	1.8	291
13	mTORC2 can associate with ribosomes to promote cotranslational phosphorylation and stability of nascent Akt polypeptide. EMBO Journal, 2010, 29, 3939-3951.	3.5	290
14	NRAGE, A Novel MAGE Protein, Interacts with the p75 Neurotrophin Receptor and Facilitates Nerve Growth Factor–Dependent Apoptosis. Neuron, 2000, 27, 279-288.	3.8	263
15	Signaling Pathways Involved in the Regulation of mRNA Translation. Molecular and Cellular Biology, 2018, 38, .	1.1	236
16	Proteomic analysis of cap-dependent translation identifies LARP1 as a key regulator of 5′TOP mRNA translation. Genes and Development, 2014, 28, 357-371.	2.7	229
17	Cellular Control of Cortical Actin Nucleation. Current Biology, 2014, 24, 1628-1635.	1.8	219
18	Transmembrane Receptor DCC Associates with Protein Synthesis Machinery and Regulates Translation. Cell, 2010, 141, 632-644.	13.5	211

PHILIPPE P ROUX

#	Article	IF	CITATIONS
19	ERK1/2 Phosphorylate Raptor to Promote Ras-dependent Activation of mTOR Complex 1 (mTORC1). Journal of Biological Chemistry, 2011, 286, 567-577.	1.6	209
20	p75 Neurotrophin Receptor Expression Is Induced in Apoptotic Neurons After Seizure. Journal of Neuroscience, 1999, 19, 6887-6896.	1.7	203
21	Quantitative phosphorylation profiling of the ERK/p90 ribosomal S6 kinase-signaling cassette and its targets, the tuberous sclerosis tumor suppressors. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 667-672.	3.3	201
22	A comprehensive map of the mTOR signaling network. Molecular Systems Biology, 2010, 6, 453.	3.2	201
23	The RSK factors of activating the Ras/MAPK signaling cascade. Frontiers in Bioscience - Landmark, 2008, Volume, 4258.	3.0	183
24	Phosphorylation of p90 Ribosomal S6 Kinase (RSK) Regulates Extracellular Signal-Regulated Kinase Docking and RSK Activity. Molecular and Cellular Biology, 2003, 23, 4796-4804.	1.1	173
25	Mubritinib Targets the Electron Transport Chain Complex I and Reveals the Landscape of OXPHOS Dependency in Acute Myeloid Leukemia. Cancer Cell, 2019, 36, 84-99.e8.	7.7	163
26	Regulation of mTOR Complex 1 (mTORC1) by Raptor Ser863 and Multisite Phosphorylation. Journal of Biological Chemistry, 2010, 285, 80-94.	1.6	158
27	EPCR expression marks UM171-expanded CD34+ cord blood stem cells. Blood, 2017, 129, 3344-3351.	0.6	158
28	The expanding role of mTOR in cancer cell growth and proliferation. Mutagenesis, 2015, 30, 169-176.	1.0	154
29	Regulation of mRNA Translation by Signaling Pathways. Cold Spring Harbor Perspectives in Biology, 2012, 4, a012252-a012252.	2.3	146
30	The p75 Neurotrophin Receptor Activates Akt (Protein Kinase B) through a Phosphatidylinositol 3-Kinase-dependent Pathway. Journal of Biological Chemistry, 2001, 276, 23097-23104.	1.6	130
31	The Tumor Suppressor DAP Kinase Is a Target of RSK-Mediated Survival Signaling. Current Biology, 2005, 15, 1762-1767.	1.8	130
32	Copper bioavailability is a KRAS-specific vulnerability in colorectal cancer. Nature Communications, 2020, 11, 3701.	5.8	128
33	The Receptor Tyrosine Kinase AXL Is Required at Multiple Steps of the Metastatic Cascade during HER2-Positive Breast Cancer Progression. Cell Reports, 2018, 23, 1476-1490.	2.9	127
34	Y-box binding protein-1 serine 102 is a downstream target of p90 ribosomal S6 kinase in basal-like breast cancer cells. Breast Cancer Research, 2008, 10, R99.	2.2	123
35	Protein Kinase A Activation Promotes Plasma Membrane Insertion of DCC from an Intracellular Pool: A Novel Mechanism Regulating Commissural Axon Extension. Journal of Neuroscience, 2004, 24, 3040-3050.	1.7	121
36	Regulation of global and specific mRNA translation by the mTOR signaling pathway. Translation, 2015, 3, e983402.	2.9	117

Philippe P Roux

#	Article	IF	CITATIONS
37	The MHC I immunopeptidome conveys to the cell surface an integrative view of cellular regulation. Molecular Systems Biology, 2011, 7, 533.	3.2	113
38	A new inhibitor of the β-arrestin/AP2 endocytic complex reveals interplay between GPCR internalization and signalling. Nature Communications, 2017, 8, 15054.	5.8	111
39	Activation of Transcription Factors NF-κB and NF-IL-6 by Human Immunodeficiency Virus Type 1 Protein R (Vpr) Induces Interleukin-8 Expression. Journal of Virology, 2000, 74, 4658-4665.	1.5	103
40	K252a and CEP1347 Are Neuroprotective Compounds That Inhibit Mixed-lineage Kinase-3 and Induce Activation of Akt and ERK. Journal of Biological Chemistry, 2002, 277, 49473-49480.	1.6	91
41	The Coming of Age of Phosphoproteomics—from Large Data Sets to Inference of Protein Functions. Molecular and Cellular Proteomics, 2013, 12, 3453-3464.	2.5	90
42	INCREASED APOPTOSIS, CHANGES IN INTRACELLULAR Ca2+, AND FUNCTIONAL ALTERATIONS IN LYMPHOCYTES AND MACROPHAGES AFTER IN VITRO EXPOSURE TO STATIC MAGNETIC FIELD. Journal of Toxicology and Environmental Health - Part A: Current Issues, 1998, 54, 63-76.	1.1	88
43	Glycogen synthase kinase-3β positively regulates protein synthesis and cell proliferation through the regulation of translation initiation factor 4E-binding protein 1. Oncogene, 2014, 33, 1690-1699.	2.6	86
44	Cell cortex composition and homeostasis resolved by integrating proteomics and quantitative imaging. Cytoskeleton, 2013, 70, 741-754.	1.0	76
45	Defining the role of the RSK isoforms in cancer. Seminars in Cancer Biology, 2018, 48, 53-61.	4.3	71
46	Phosphoproteomic analysis identifies the tumor suppressor PDCD4 as a RSK substrate negatively regulated by 14-3-3. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E2918-27.	3.3	70
47	F-Actin Interactome Reveals Vimentin as a Key Regulator of Actin Organization and Cell Mechanics in Mitosis. Developmental Cell, 2020, 52, 210-222.e7.	3.1	70
48	RSK phosphorylates SOS1 creating 14-3-3-docking sites and negatively regulating MAPK activation. Biochemical Journal, 2012, 447, 159-166.	1.7	69
49	ERK2 regulates epithelial-to-mesenchymal plasticity through DOCK10-dependent Rac1/FoxO1 activation. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 2967-2976.	3.3	61
50	RSK regulates activated BRAF signalling to mTORC1 and promotes melanoma growth. Oncogene, 2013, 32, 2917-2926.	2.6	56
51	Paving the way for targeting RSK in cancer. Expert Opinion on Therapeutic Targets, 2011, 15, 5-9.	1.5	53
52	Controversies around the function of LARP1. RNA Biology, 2021, 18, 207-217.	1.5	49
53	High-throughput screening in niche-based assay identifies compounds to target preleukemic stem cells. Journal of Clinical Investigation, 2016, 126, 4569-4584.	3.9	49
54	SPIN90 associates with mDia1 and the Arp2/3 complex to regulate cortical actin organization. Nature Cell Biology, 2020, 22, 803-814.	4.6	48

PHILIPPE P ROUX

#	Article	IF	CITATIONS
55	RSK Regulates PFK-2 Activity to Promote Metabolic Rewiring in Melanoma. Cancer Research, 2018, 78, 2191-2204.	0.4	47
56	Loss of DP1 Aggravates Vascular Remodeling in Pulmonary Arterial Hypertension via mTORC1 Signaling. American Journal of Respiratory and Critical Care Medicine, 2020, 201, 1263-1276.	2.5	47
57	The p75 Neurotrophin Receptor (p75NTR) Alters Tumor Necrosis Factor-mediated NF-κB Activity under Physiological Conditions, but Direct p75NTR-mediated NF-κB Activation Requires Cell Stress. Journal of Biological Chemistry, 1999, 274, 21443-21449.	1.6	46
58	Mutations in DOCK7 in Individuals with Epileptic Encephalopathy and Cortical Blindness. American Journal of Human Genetics, 2014, 94, 891-897.	2.6	44
59	Casein Kinase 1ϵ Promotes Cell Proliferation by Regulating mRNA Translation. Cancer Research, 2014, 74, 201-211.	0.4	43
60	Disruption of TBC1D7, a subunit of the TSC1-TSC2 protein complex, in intellectual disability and megalencephaly. Journal of Medical Genetics, 2013, 50, 740-744.	1.5	41
61	Translational control by oncogenic signaling pathways. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2015, 1849, 753-765.	0.9	40
62	Focal Adhesion- and IGF1R-Dependent Survival and Migratory Pathways Mediate Tumor Resistance to mTORC1/2 Inhibition. Molecular Cell, 2017, 67, 512-527.e4.	4.5	40
63	Cell cycle regulation of Greatwall kinase nuclear localization facilitates mitotic progression. Journal of Cell Biology, 2013, 202, 277-293.	2.3	39
64	Receptor sequestration in response to β-arrestin-2 phosphorylation by ERK1/2 governs steady-state levels of GPCR cell-surface expression. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E5160-8.	3.3	39
65	Activation and Function of the MAPKs and Their Substrates, the MAPK-Activated Protein Kinases. Microbiology and Molecular Biology Reviews, 2012, 76, 496-496.	2.9	35
66	Mind the GAP: Wnt Steps onto the mTORC1 Train. Cell, 2006, 126, 834-836.	13.5	34
67	Phosphorylation of the Eukaryotic Translation Initiation Factor 4E-Transporter (4E-T) by c-Jun N-Terminal Kinase Promotes Stress-Dependent P-Body Assembly. Molecular and Cellular Biology, 2012, 32, 4572-4584.	1.1	33
68	RSK promotes G2 DNA damage checkpoint silencing and participates in melanoma chemoresistance. Oncogene, 2013, 32, 4480-4489.	2.6	32
69	Gab2 Phosphorylation by RSK Inhibits Shp2 Recruitment and Cell Motility. Molecular and Cellular Biology, 2013, 33, 1657-1670.	1.1	30
70	Misshapen coordinates protrusion restriction and actomyosin contractility during collective cell migration. Nature Communications, 2019, 10, 3940.	5.8	29
71	Rapamycin Resistance: mTORC1 Substrates Hold Some of the Answers. Current Biology, 2013, 23, R880-R883.	1.8	28
72	Effect of the Transient Pharmacological Inhibition of Mapk3/1 Pathway on Ovulation in Mice. PLoS ONE, 2015, 10, e0119387.	1.1	28

5

Philippe P Roux

#	Article	IF	CITATIONS
73	Human models of NUP98-KDM5A megakaryocytic leukemia in mice contribute to uncovering new biomarkers and therapeutic vulnerabilities. Blood Advances, 2019, 3, 3307-3321.	2.5	23
74	Insulin Activates RSK (p90 Ribosomal S6 Kinase) to Trigger a New Negative Feedback Loop That Regulates Insulin Signaling for Glucose Metabolism. Journal of Biological Chemistry, 2013, 288, 31165-31176.	1.6	22
75	A biosensor to monitor dynamic regulation and function of tumour suppressor PTEN in living cells. Nature Communications, 2014, 5, 4431.	5.8	21
76	NF45 and NF90 Regulate Mitotic Gene Expression by Competing with Staufen-Mediated mRNA Decay. Cell Reports, 2020, 31, 107660.	2.9	19
77	Extracellular Signal-Regulated Kinases 1 and 2 Phosphorylate Gab2 To Promote a Negative-Feedback Loop That Attenuates Phosphoinositide 3-Kinase/Akt Signaling. Molecular and Cellular Biology, 2017, 37, .	1.1	17
78	Predisposing germline mutations in high hyperdiploid acute lymphoblastic leukemia in children. Genes Chromosomes and Cancer, 2019, 58, 723-730.	1.5	17
79	Proteomic Analysis Reveals a Role for RSK in p120-catenin Phosphorylation and Melanoma Cell-Cell Adhesion. Molecular and Cellular Proteomics, 2020, 19, 50-64.	2.5	16
80	Regulation of Karyopherin α1 and Nuclear Import by Mammalian Target of Rapamycin. Journal of Biological Chemistry, 2012, 287, 14325-14335.	1.6	15
81	Rsk3. The AFCS-nature Molecule Pages, 0, , .	0.2	12
82	Rsk4. The AFCS-nature Molecule Pages, 0, , .	0.2	12
83	F-Box Proteins Elongate Translation During Stress Recovery. Science Signaling, 2012, 5, pe25.	1.6	11
84	Mechanistic target of rapamycin (MTOR) signaling during ovulation in mice. Molecular Reproduction and Development, 2014, 81, 655-665.	1.0	11
85	An ErbB2 splice variant lacking exon 16 drives lung carcinoma. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 20139-20148.	3.3	11
86	STRIPAK regulates Slik localization to control mitotic morphogenesis and epithelial integrity. Journal of Cell Biology, 2020, 219, .	2.3	10
87	CdGAP/ARHGAP31 is regulated by RSK phosphorylation and binding to 14-3-3Î ² adaptor protein. Oncotarget, 2018, 9, 11646-11664.	0.8	10
88	Triglyceride-derived fatty acids reduce autophagy in a model of retinal angiomatous proliferation. JCI Insight, 2022, 7, .	2.3	9
89	RIOK2 phosphorylation by RSK promotes synthesis of the human small ribosomal subunit. PLoS Genetics, 2021, 17, e1009583.	1.5	7
90	Proteomics Screen Identifies Class I Rab11 Family Interacting Proteins as Key Regulators of Cytokinesis. Molecular and Cellular Biology, 2017, 37, .	1.1	6

PHILIPPE P ROUX

#	Article	IF	CITATIONS
91	Sustained ERK1/2 signaling is necessary for follicular rupture during ovulation in mice. Reproduction, 2021, 161, 183-193.	1.1	6
92	Targeting copper metabolism to defeat KRAS-driven colorectal cancer. Molecular and Cellular Oncology, 2020, 7, 1822123.	0.3	5
93	Coordination of Pro- and Anti-Inflammatory Signals Determine Human Hematopoietic Stem and Progenitor Cell Expansion. Blood, 2018, 132, 2555-2555.	0.6	5
94	CEACAM1 is a novel culture-compatible surface marker of expanded long-term reconstituting hematopoietic stem cells. Blood Advances, 2022, 6, 3626-3631.	2.5	3
95	Regulation of protein kinase Cδ Nuclear Import and Apoptosis by Mechanistic Target of Rapamycin Complex-1. Scientific Reports, 2019, 9, 17620.	1.6	2
96	MAPK Signaling in Human Diseases. , 2006, , 135-149.		1
97	Rsk1. The AFCS-nature Molecule Pages, 0, , .	0.2	1
98	Mubritinib Targets the Electron Transport Chain Complex I and Reveals the Landscape of Mitochondrial Vulnerability in Acute Myeloid Leukemia. Blood, 2018, 132, 910-910.	0.6	1
99	Targeting pre-leukemic stem cells in T-acute lymphoblastic leukemia. Experimental Hematology, 2015, 43, S49.	0.2	0
100	ISDN2014_0400: Mutations in <i>DOCK7</i> in individuals with epileptic encephalopathy and cortical blindness. International Journal of Developmental Neuroscience, 2015, 47, 119-120.	0.7	0
101	P90 Ribosomal S6 Kinase is a Potential Diabetes Therapeutic Target. Canadian Journal of Diabetes, 2018, 42, S57.	0.4	0
102	Nckipsd Coordinates Arp2/3 and Formin Nucleation of Actin Filaments in the Cell Cortex. Biophysical Journal, 2019, 116, 253a.	0.2	0
103	Cell Growth Regulation by PI3â€kinase, Ras and mTOR Signal Integration. FASEB Journal, 2006, 20, A852.	0.2	0
104	Abstract 5191: Gab2 phosphorylation by RSK inhibits Shp2 recruitment and cell motility , 2013, , .		0
105	RSK (p90 Ribosomal S6 Kinase). , 2016, , 1-6.		0
106	Targeting Pre-Leukemic Stem Cells in T-Acute Lymphoblastic Leukemia. Blood, 2016, 128, 527-527.	0.6	0
107	RSK (p90 Ribosomal S6 Kinase). , 2018, , 4762-4767.		0
108	Abstract 3502: Chemoproteomics provide insights into cell surface reprogramming during KRAS-mediated transformation. , 2018, , .		0

D.		DDE	וח		1152	
Р	HIII	PPE	Р	κO	UX –	

#	Article	IF	CITATIONS
109	Germline GAB2 Mutations in Childhood Acute Lymphoblastic Leukemia. Blood, 2018, 132, 388-388.	0.6	Ο