
James L Keck

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5248832/publications.pdf Version: 2024-02-01

INMES | KECK

#	Article	IF	CITATIONS
1	Natural Transformation Protein ComFA Exhibits Single-Stranded DNA Translocase Activity. Journal of Bacteriology, 2022, 204, JB0051821.	2.2	2
2	Use of an unnatural amino acid to map helicase/DNA interfaces via photoactivated crosslinking. Methods in Enzymology, 2022, , .	1.0	1
3	Mismatch discrimination and sequence bias during end-joining by DNA ligases. Nucleic Acids Research, 2022, 50, 4647-4658.	14.5	12
4	X-ray crystal structure of the Escherichia coli RadD DNA repair protein bound to ADP reveals a novel zinc ribbon domain. PLoS ONE, 2022, 17, e0266031.	2.5	5
5	The molecular coupling between substrate recognition and ATP turnover in aÂAAA+ hexameric helicase loader. ELife, 2021, 10, .	6.0	7
6	Examination of the roles of a conserved motif in the PriA helicase in structure-specific DNA unwinding and processivity. PLoS ONE, 2021, 16, e0255409.	2.5	2
7	Escherichia coli Kâ€12 has two distinguishable PriAâ€PriB replication restart pathways. Molecular Microbiology, 2021, 116, 1140-1150.	2.5	9
8	Minor Alterations in Core Promoter Element Positioning Reveal Functional Plasticity of a Bacterial Transcription Factor. MBio, 2021, 12, e0275321.	4.1	1
9	Interaction with singleâ€stranded DNAâ€binding protein localizes ribonuclease HI to DNA replication forks and facilitates Râ€loop removal. Molecular Microbiology, 2020, 114, 495-509.	2.5	14
10	Development of a single-stranded DNA-binding protein fluorescent fusion toolbox. Nucleic Acids Research, 2020, 48, 6053-6067.	14.5	16
11	Molecular Mechanism of Regulation of the Purine Salvage Enzyme XPRT by the Alarmones pppGpp, ppGpp, and pGpp. Journal of Molecular Biology, 2020, 432, 4108-4126.	4.2	31
12	Antigenic Variation in <i>Neisseria gonorrhoeae</i> Occurs Independently of RecQ-Mediated Unwinding of the <i>pilE</i> G Quadruplex. Journal of Bacteriology, 2020, 202, .	2.2	9
13	E. coli Rep helicase and RecA recombinase unwind G4 DNA and are important for resistance to G4-stabilizing ligands. Nucleic Acids Research, 2020, 48, 6640-6653.	14.5	24
14	Function of a strand-separation pin element in the PriA DNA replication restart helicase. Journal of Biological Chemistry, 2019, 294, 2801-5614.	3.4	19
15	Structural Mechanisms of Cooperative DNA Binding by Bacterial Single-Stranded DNA-Binding Proteins. Journal of Molecular Biology, 2019, 431, 178-195.	4.2	31
16	Practical Model Selection for Prospective Virtual Screening. Journal of Chemical Information and Modeling, 2019, 59, 282-293.	5.4	46
17	Evolution of (p)ppGpp-HPRT regulation through diversification of an allosteric oligomeric interaction. ELife, 2019, 8, .	6.0	40
18	A Potential Specificity Code for B. subtilis SsbA and SsbB Quaternary Structures. FASEB Journal, 2019, 33, 493.7.	0.5	0

#	Article	IF	CITATIONS
19	Mechanisms of bacterial DNA replication restart. Nucleic Acids Research, 2018, 46, 504-519.	14.5	67
20	A High-Throughput Screening Strategy to Identify Inhibitors of SSB Protein–Protein Interactions in an Academic Screening Facility. SLAS Discovery, 2018, 23, 94-101.	2.7	23
21	A guanine-flipping and sequestration mechanism for G-quadruplex unwinding by RecQ helicases. Nature Communications, 2018, 9, 4201.	12.8	46
22	Structure-specific DNA replication-fork recognition directs helicase and replication restart activities of the PriA helicase. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E9075-E9084.	7.1	30
23	Development of Protein–Protein Interaction Inhibitors for the Treatment of Infectious Diseases. Advances in Protein Chemistry and Structural Biology, 2018, 111, 197-222.	2.3	15
24	Single molecule kinetics uncover roles for E. coli RecQ DNA helicase domains and interaction with SSB. Nucleic Acids Research, 2018, 46, 8500-8515.	14.5	30
25	Structural and Cellular Mechanisms of DNA Replication Restart in Escherichia coli. FASEB Journal, 2018, 32, 786.9.	0.5	0
26	An aromatic-rich loop couples DNA binding and ATP hydrolysis in the PriA DNA helicase. Nucleic Acids Research, 2016, 44, gkw690.	14.5	13
27	Structure and Function of the PriC DNA Replication Restart Protein. Journal of Biological Chemistry, 2016, 291, 18384-18396.	3.4	17
28	A High-Throughput Screening Strategy to Identify Protein-Protein Interaction Inhibitors That Block the Fanconi Anemia DNA Repair Pathway. Journal of Biomolecular Screening, 2016, 21, 626-633.	2.6	29
29	Structural and Functional Studies of H. seropedicae RecA Protein – Insights into the Polymerization of RecA Protein as Nucleoprotein Filament. PLoS ONE, 2016, 11, e0159871.	2.5	7
30	Molecular Mechanism and Evolution of Guanylate Kinase Regulation by (p)ppGpp. Molecular Cell, 2015, 57, 735-749.	9.7	88
31	Interaction with Single-stranded DNA-binding Protein Stimulates Escherichia coli Ribonuclease HI Enzymatic Activity. Journal of Biological Chemistry, 2015, 290, 14626-14636.	3.4	61
32	Structural mechanisms of DNA binding and unwinding in bacterial RecQ helicases. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 4292-4297.	7.1	58
33	Structural mechanisms of PriA-mediated DNA replication restart. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 1373-1378.	7.1	94
34	RecD2 Helicase Limits Replication Fork Stress in Bacillus subtilis. Journal of Bacteriology, 2014, 196, 1359-1368.	2.2	27
35	Grip it and rip it: Structural mechanisms of DNA helicase substrate binding and unwinding. Protein Science, 2014, 23, 1498-1507.	7.6	20
36	The BLM dissolvasome in DNA replication and repair. Cellular and Molecular Life Sciences, 2013, 70, 4067-4084.	5.4	92

#	Article	IF	CITATIONS
37	Neisseria gonorrhoeae RecQ Helicase HRDC Domains Are Essential for Efficient Binding and Unwinding of the <i>pilE</i> Guanine Quartet Structure Required for Pilin Antigenic Variation. Journal of Bacteriology, 2013, 195, 2255-2261.	2.2	29
38	PriC-mediated DNA Replication Restart Requires PriC Complex Formation with the Single-stranded DNA-binding Protein. Journal of Biological Chemistry, 2013, 288, 17569-17578.	3.4	47
39	The Deinococcus radiodurans DR1245 Protein, a DdrB Partner Homologous to YbjN Proteins and Reminiscent of Type III Secretion System Chaperones. PLoS ONE, 2013, 8, e56558.	2.5	23
40	Protein Interactions in Genome Maintenance as Novel Antibacterial Targets. PLoS ONE, 2013, 8, e58765.	2.5	37
41	Indispensible Replication Restart Helicase PriA Aids Bacterial Survival: A SMART Team Story. FASEB Journal, 2013, 27, lb201.	0.5	0
42	Genetic recombination in Bacillus subtilis : a division of labor between two single-strand DNA-binding proteins. Nucleic Acids Research, 2012, 40, 5546-5559.	14.5	90
43	Structure and Cellular Dynamics of Deinococcus radiodurans Single-stranded DNA (ssDNA)-binding Protein (SSB)-DNA Complexes. Journal of Biological Chemistry, 2012, 287, 22123-22132.	3.4	49
44	Defining the molecular interface that connects the Fanconi anemia protein FANCM to the Bloom syndrome dissolvasome. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 4437-4442.	7.1	56
45	Binding Mechanism of Metalâ‹NTP Substrates and Stringent-Response Alarmones to Bacterial DnaG-Type Primases. Structure, 2012, 20, 1478-1489.	3.3	73
46	Structural and Kinetic Isotope Effect Studies of Nicotinamidase (Pnc1) from <i>Saccharomyces cerevisiae</i> . Biochemistry, 2012, 51, 243-256.	2.5	18
47	Structural basis for the interaction between E. coli RNase HI and SSB. FASEB Journal, 2012, 26, lb87.	0.5	0
48	Molecular Interactions in PriCâ€mediated DNA Replication Restart. FASEB Journal, 2012, 26, lb88.	0.5	0
49	The primase domain of PfPrex is a proteolytically matured, essential enzyme of the apicoplast. Molecular and Biochemical Parasitology, 2011, 180, 69-75.	1.1	21
50	Mechanism of Exonuclease I stimulation by the single-stranded DNA-binding protein. Nucleic Acids Research, 2011, 39, 6536-6545.	14.5	20
51	Structure and Biochemical Activities of Escherichia coli MgsA. Journal of Biological Chemistry, 2011, 286, 12075-12085.	3.4	29
52	Creating Directed Double-strand Breaks with the Ref Protein. Journal of Biological Chemistry, 2011, 286, 8240-8251.	3.4	16
53	Structure of the SSB-DNA polymerase III interface and its role in DNA replication. EMBO Journal, 2011, 30, 4236-4247.	7.8	132
54	Primase: a SMART team adventure through DNA replication. FASEB Journal, 2011, 25, lb164.	0.5	0

#	Article	IF	CITATIONS
55	Structure and Cellular Roles of the RMI Core Complex from the Bloom Syndrome Dissolvasome. Structure, 2010, 18, 1149-1158.	3.3	33
56	X-ray Crystal Structure of the Bacterial Conjugation Factor PsiB, a Negative Regulator of RecA. Journal of Biological Chemistry, 2010, 285, 30615-30621.	3.4	8
57	Small-molecule tools for dissecting the roles of SSB/protein interactions in genome maintenance. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 633-638.	7.1	29
58	Catalytic activation of histone acetyltransferase Rtt109 by a histone chaperone. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 20275-20280.	7.1	42
59	Rising from the Ashes: DNA Repair in Deinococcus radiodurans. PLoS Genetics, 2010, 6, e1000815.	3.5	54
60	Structural Determinants of DNA Binding by a P. falciparum ApiAP2 Transcriptional Regulator. Journal of Molecular Biology, 2010, 395, 558-567.	4.2	59
61	Werner Helicase Wings DNA Binding. Structure, 2010, 18, 149-151.	3.3	7
62	The missing piece: Structural identification of the SSB binding site on the Chi/Psi clampâ€loader subassembly. FASEB Journal, 2010, 24, lb47.	0.5	0
63	The structure of the RMI core complex resembles the RPA interface. FASEB Journal, 2010, 24, lb44.	0.5	0
64	Structural mechanisms of ssDNA/SSBâ€processing enzymes. FASEB Journal, 2010, 24, 196.3.	0.5	0
65	3D rapid prototyping to model DNA replication and engage students in the scientific process. FASEB Journal, 2010, 24, lb45.	0.5	0
66	RecQ DNA helicase HRDC domains are critical determinants in <i>Neisseria gonorrhoeae</i> pilin antigenic variation and DNA repair. Molecular Microbiology, 2009, 71, 158-171.	2.5	11
67	Slip sliding on DNA. Nature, 2009, 461, 1067-1068.	27.8	3
68	Peptide Inhibitors Identify Roles for SSB C-Terminal Residues in SSB/Exonuclease I Complex Formation. Biochemistry, 2009, 48, 6764-6771.	2.5	31
69	Identification of the SSB Binding Site on E. coli RecQ Reveals a Conserved Surface for Binding SSB's C Terminus. Journal of Molecular Biology, 2009, 386, 612-625.	4.2	84
70	Insights into tumor suppressor protein p53 using threeâ€dimensional modeling and rapid prototyping technology. FASEB Journal, 2009, 23, LB310.	0.5	0
71	Molecular functions of the histone acetyltransferase chaperone complex Rtt109–Vps75. Nature Structural and Molecular Biology, 2008, 15, 948-956.	8.2	104
72	SSB as an Organizer/Mobilizer of Genome Maintenance Complexes. Critical Reviews in Biochemistry and Molecular Biology, 2008, 43, 289-318.	5.2	487

#	Article	IF	CITATIONS
73	Influences of the N700S Thrombospondin-1 Polymorphism on Protein Structure and Stability. Journal of Biological Chemistry, 2008, 283, 20069-20076.	3.4	22
74	Structure and function of the regulatory C-terminal HRDC domain from Deinococcus radiodurans RecQ. Nucleic Acids Research, 2008, 36, 3139-3149.	14.5	28
75	Structural basis of <i>Escherichia coli</i> single-stranded DNA-binding protein stimulation of exonuclease I. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 9169-9174.	7.1	109
76	SSB: Organizational center and Achilles heel. FASEB Journal, 2008, 22, 592.3.	0.5	0
77	Magic Spots Cast a Spell on DNA Primase. Cell, 2007, 128, 823-824.	28.9	12
78	A Hand-Off Mechanism for Primosome Assembly in Replication Restart. Molecular Cell, 2007, 26, 781-793.	9.7	72
79	A Central Role for SSB in Escherichia coli RecQ DNA Helicase Function. Journal of Biological Chemistry, 2007, 282, 19247-19258.	3.4	130
80	Helix Bundle Quaternary Structure from α/β-Peptide Foldamers. Journal of the American Chemical Society, 2007, 129, 4178-4180.	13.7	191
81	Sit down, relax and unwind: structural insights into RecQ helicase mechanisms. Nucleic Acids Research, 2006, 34, 4098-4105.	14.5	56
82	Structure of the Sir3 protein bromo adjacent homology (BAH) domain fromS. cerevisiaeat 1.95 Ã resolution. Protein Science, 2006, 15, 1182-1186.	7.6	25
83	Three HRDC Domains Differentially Modulate Deinococcus radiodurans RecQ DNA Helicase Biochemical Activity. Journal of Biological Chemistry, 2006, 281, 12849-12857.	3.4	32
84	Structure of the calcium-rich signature domain of human thrombospondin-2. Nature Structural and Molecular Biology, 2005, 12, 910-914.	8.2	81
85	The HRDC domain of BLM is required for the dissolution of double Holliday junctions. EMBO Journal, 2005, 24, 2679-2687.	7.8	150
86	Conferring Substrate Specificity to DNA Helicases: Role of the RecQ HRDC Domain. Structure, 2005, 13, 1173-1182.	3.3	81
87	Structural basis of the Sir1-origin recognition complex interaction in transcriptional silencing. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 8489-8494.	7.1	80
88	PriB Stimulates PriA Helicase via an Interaction with Single-stranded DNA. Journal of Biological Chemistry, 2005, 280, 39693-39700.	3.4	59
89	Coupling DNA-binding and ATP hydrolysis in Escherichia coli RecQ: role of a highly conserved aromatic-rich sequence. Nucleic Acids Research, 2005, 33, 6982-6991.	14.5	36
90	Structure of the Calcium-Rich Signature Domain of Human Thrombospondin-2 Blood, 2005, 106, 3679-3679.	1.4	0

#	Article	IF	CITATIONS
91	Crystal structure of the Deinococcus radiodurans single-stranded DNA-binding protein suggests a mechanism for coping with DNA damage. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 8575-8580.	7.1	100
92	The Origin Recognition Complex and Sir4 Protein Recruit Sir1p to Yeast Silent Chromatin through Independent Interactions Requiring a Common Sir1p Domain. Molecular and Cellular Biology, 2004, 24, 774-786.	2.3	64
93	Crystal Structure of PriB, a Component of the Escherichia coli Replication Restart Primosome. Structure, 2004, 12, 1967-1975.	3.3	33
94	Structure and Function of RecQ DNA Helicases. Critical Reviews in Biochemistry and Molecular Biology, 2004, 39, 79-97.	5.2	89
95	High-resolution structure of the E.coli RecQ helicase catalytic core. EMBO Journal, 2003, 22, 4910-4921.	7.8	220
96	Domain mapping of Escherichia coli RecQ defines the roles of conserved N- and C-terminal regions in the RecQ family. Nucleic Acids Research, 2003, 31, 2778-2785.	14.5	77
97	Primus inter pares (first among equals). , 2001, 8, 2-4.		17
98	DNA replication at high resolution. Chemistry and Biology, 2000, 7, R63-R71.	6.0	13
99	Divalent metal cofactor binding in the kinetic folding trajectory of <i>Escherichia coli</i> ribonuclease HI. Protein Science, 2000, 9, 1914-1921.	7.6	49
100	Structure of the RNA Polymerase Domain of E. coli Primase. Science, 2000, 287, 2482-2486.	12.6	160
101	Enzymes that push DNA around. , 1999, 6, 900-902.		12
102	Structure and function of an archaeal topoisomerase VI subunit with homology to the meiotic recombination factor Spo11. EMBO Journal, 1999, 18, 6177-6188.	7.8	152
103	Binding specificity determines polarity of DNA unwinding by the Sgs1 protein of S. cerevisiae. Journal of Molecular Biology, 1999, 289, 235-248.	4.2	122
104	Activation/Attenuation Model for RNase H. Journal of Biological Chemistry, 1998, 273, 34128-34133.	3.4	84
105	Metal activation and regulation of E. coli RNase H. Techniques in Protein Chemistry, 1997, , 409-416.	0.3	3
106	The Putative Substrate Recognition Loop of Escherichia coli Ribonuclease H Is Not Essential for Activity. Journal of Biological Chemistry, 1996, 271, 19883-19887.	3.4	31
107	Substitution of a highly basic helix/loop sequence into the RNase H domain of human immunodeficiency virus reverse transcriptase restores its Mn(2+)-dependent RNase H activity Proceedings of the National Academy of Sciences of the United States of America, 1995, 92, 2740-2744.	7.1	55