Mathias Hornef

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/524857/publications.pdf Version: 2024-02-01

		31976	38395
141	10,124	53	95
papers	citations	h-index	g-index
145 all docs	145 docs citations	145 times ranked	14241 citing authors

#	Article	IF	CITATIONS
1	Spatial and temporal key steps in earlyâ€life intestinal immune system development and education. FEBS Journal, 2022, 289, 4731-4757.	4.7	7
2	Allulose in human diet: the knowns and the unknowns. British Journal of Nutrition, 2022, 128, 172-178.	2.3	4
3	Stabilization but No Functional Influence of HIF-1α Expression in the Intestinal Epithelium during Salmonella Typhimurium Infection. Infection and Immunity, 2022, 90, iai0022221.	2.2	7
4	Should we modulate the neonatal microbiome and what should be the goal?. Microbiome, 2022, 10, 74.	11.1	6
5	The Staphylococcus epidermidis Transcriptional Profile During Carriage. Frontiers in Microbiology, 2022, 13, 896311.	3.5	5
6	Determination of SARS-CoV-2 antibodies with assays from Diasorin, Roche and IDvet. Journal of Virological Methods, 2021, 287, 113978.	2.1	26
7	Comparison of the SARS-CoV-2 Rapid antigen test to the real star Sars-CoV-2 RT PCR kit. Journal of Virological Methods, 2021, 288, 114024.	2.1	144
8	Early life host regulation of the mammalian enteric microbiota composition. International Journal of Medical Microbiology, 2021, 311, 151498.	3.6	0
9	Perinatal development of innate immune topology. ELife, 2021, 10, .	6.0	19
10	On microbial syringes: Advances in our understanding of type III secretion systems in bacterial pathogenesis. Physics of Life Reviews, 2021, 39, 96-98.	2.8	0
11	Adaptation of Staphylococcus aureus to the Human Skin Environment Identified Using an ex vivo Tissue Model. Frontiers in Microbiology, 2021, 12, 728989.	3.5	11
12	A philosophical perspective on the prenatal in utero microbiome debate. Microbiome, 2021, 9, 5.	11.1	42
13	SPI2 T3SS effectors facilitate enterocyte apical to basolateral transmigration of <i>Salmonella</i> -containing vacuoles <i>in vivo</i> . Gut Microbes, 2021, 13, 1973836.	9.8	6
14	Allergic diseases in infancy II–oral tolerance and its failure. World Allergy Organization Journal, 2021, 14, 100586.	3.5	3
15	Allergic diseases in infancy: I - Epidemiology and current interpretation. World Allergy Organization Journal, 2021, 14, 100591.	3.5	15
16	Gut microbiota in wheezing preschool children and the association with childhood asthma. Allergy: European Journal of Allergy and Clinical Immunology, 2020, 75, 1473-1476.	5.7	16
17	â€ ⁻ Layered immunity' and the â€ ⁻ neonatal window of opportunity' – timed succession of nonâ€redund phases to establish mucosal host–microbial homeostasis after birth. Immunology, 2020, 159, 15-25.	ant 4.4	72
18	Disturbed gut microbiota and bile homeostasis in <i>Giardia</i> -infected mice contributes to metabolic dysregulation and growth impairment. Science Translational Medicine, 2020, 12, .	12.4	24

#	Article	IF	CITATIONS
19	Influence of probiotic supplementation on the developing microbiota in human preterm neonates. Gut Microbes, 2020, 12, 1826747.	9.8	26
20	How to Count Our Microbes? The Effect of Different Quantitative Microbiome Profiling Approaches. Frontiers in Cellular and Infection Microbiology, 2020, 10, 403.	3.9	65
21	Bile acids drive the newborn's gut microbiota maturation. Nature Communications, 2020, 11, 3692.	12.8	100
22	Toward a porcine in vivo model to analyze the pathogenesis of TLR5-dependent enteropathies. Gut Microbes, 2020, 12, 1782163.	9.8	1
23	Microbial–host molecular exchange and its functional consequences in early mammalian life. Science, 2020, 368, 604-607.	12.6	91
24	Development of the Microbiota and Associations With Birth Mode, Diet, and Atopic Disorders in a Longitudinal Analysis of Stool Samples, Collected From Infancy Through Early Childhood. Gastroenterology, 2020, 158, 1584-1596.	1.3	159
25	Comparison of four new commercial serologic assays for determination of SARS-CoV-2 IgG. Journal of Clinical Virology, 2020, 128, 104394.	3.1	120
26	The Timed Pathway to Homeostasis. Immunity, 2019, 50, 1127-1129.	14.3	1
27	Synthetic Anti-lipopolysaccharide Peptides (SALPs) as Effective Inhibitors of Pathogen-Associated Molecular Patterns (PAMPs). Advances in Experimental Medicine and Biology, 2019, 1117, 111-129.	1.6	8
28	The neonatal window of opportunity—early priming for life. Journal of Allergy and Clinical Immunology, 2018, 141, 1212-1214.	2.9	87
29	Seeing is understanding: Salmonella's way to penetrate the intestinal epithelium. International Journal of Medical Microbiology, 2018, 308, 97-106.	3.6	14
30	Pathways of host cell exit by intracellular pathogens. Microbial Cell, 2018, 5, 525-544.	3.2	56
31	Neonatally imprinted stromal cell subsets induce tolerogenic dendritic cells in mesenteric lymph nodes. Nature Communications, 2018, 9, 3903.	12.8	69
32	The olfactory epithelium as a port of entry in neonatal neurolisteriosis. Nature Communications, 2018, 9, 4269.	12.8	32
33	Microbiome and Early Life. , 2018, , 31-47.		1
34	Neonatal selection by Toll-like receptor 5 influences long-term gut microbiota composition. Nature, 2018, 560, 489-493.	27.8	153
35	Minimal SPI1-T3SS effector requirement for Salmonella enterocyte invasion and intracellular proliferation in vivo. PLoS Pathogens, 2018, 14, e1006925.	4.7	62
36	Antibiotic treatment–induced secondary IgA deficiency enhances susceptibility to Pseudomonas aeruginosa pneumonia. Journal of Clinical Investigation, 2018, 128, 3535-3545.	8.2	75

#	Article	IF	CITATIONS
37	The Neonatal Window of Opportunity: Setting the Stage for Life-Long Host-Microbial Interaction and Immune Homeostasis. Journal of Immunology, 2017, 198, 557-563.	0.8	146
38	β7-Integrin and MAdCAM-1 play opposing roles during the development of non-alcoholic steatohepatitis. Journal of Hepatology, 2017, 66, 1251-1264.	3.7	23
39	Neonatal mucosal immunology. Mucosal Immunology, 2017, 10, 5-17.	6.0	117
40	Dextran sodium sulfate (DSS) induces necrotizing enterocolitis-like lesions in neonatal mice. PLoS ONE, 2017, 12, e0182732.	2.5	37
41	CD4 T Cell Dependent Colitis Exacerbation Following Re-Exposure of Mycobacterium avium ssp. paratuberculosis. Frontiers in Cellular and Infection Microbiology, 2017, 7, 75.	3.9	4
42	Cell Polarization and Epigenetic Status Shape the Heterogeneous Response to Type III Interferons in Intestinal Epithelial Cells. Frontiers in Immunology, 2017, 8, 671.	4.8	41
43	Identification of a Predominantly Interferon-λ-Induced Transcriptional Profile in Murine Intestinal Epithelial Cells. Frontiers in Immunology, 2017, 8, 1302.	4.8	32
44	Gut Colonization by Methanogenic Archaea Is Associated with Organic Dairy Consumption in Children. Frontiers in Microbiology, 2017, 8, 355.	3.5	59
45	Secretory IgA in the Coordination of Establishment and Maintenance of the Microbiota. Trends in Immunology, 2016, 37, 287-296.	6.8	160
46	Intra-amniotic Candida albicans infection induces mucosal injury and inflammation in the ovine fetal intestine. Scientific Reports, 2016, 6, 29806.	3.3	21
47	The Mouse Intestinal Bacterial Collection (miBC) provides host-specific insight into cultured diversity and functional potential of the gut microbiota. Nature Microbiology, 2016, 1, 16131.	13.3	465
48	The viral dsRNA analogue poly (I:C) induces necrotizing enterocolitis in neonatal mice. Pediatric Research, 2016, 79, 596-602.	2.3	12
49	Real friends: <i>Faecalibacterium prausnitzii</i> supports mucosal immune homeostasis. Gut, 2016, 65, 365-367.	12.1	33
50	Dysbiotic gut microbiota causes transmissible Crohn's disease-like ileitis independent of failure in antimicrobial defence. Gut, 2016, 65, 225-237.	12.1	317
51	Reduced PICD in Monocytes Mounts Altered Neonate Immune Response to Candida albicans. PLoS ONE, 2016, 11, e0166648.	2.5	12
52	Age-Dependent Susceptibility to Enteropathogenic Escherichia coli (EPEC) Infection in Mice. PLoS Pathogens, 2016, 12, e1005616.	4.7	45
53	The deadly bite of <i>Salmonella</i> Typhi. EMBO Reports, 2015, 16, 887-888.	4.5	3
54	An unusual cause of ventriculoperitoneal shunt infection. JAAPA: Official Journal of the American Academy of Physician Assistants, 2015, 28, 39-42.	0.3	3

#	Article	IF	CITATIONS
55	On the origin of species: Factors shaping the establishment of infant's gut microbiota. Birth Defects Research Part C: Embryo Today Reviews, 2015, 105, 240-251.	3.6	66
56	Intestinal mucus affinity and biological activity of an orally administered antibacterial and anti-inflammatory peptide. Gut, 2015, 64, 222-232.	12.1	25
57	Transcriptional profiling of intestinal CD4+ T cells in the neonatal and adult mice. Genomics Data, 2015, 5, 371-374.	1.3	7
58	Dedicated immunosensing of the mouse intestinal epithelium facilitated by a pair of genetically coupled lectin-like receptors. Mucosal Immunology, 2015, 8, 232-242.	6.0	16
59	The intestinal epithelium as guardian of gut barrier integrity. Cellular Microbiology, 2015, 17, 1561-1569.	2.1	93
60	Active suppression of intestinal CD4+TCRαβ+ T-lymphocyte maturation during the postnatal period. Nature Communications, 2015, 6, 7725.	12.8	58
61	Pathogens, Commensal Symbionts, and Pathobionts: Discovery and Functional Effects on the Host. ILAR Journal, 2015, 56, 159-162.	1.8	76
62	Caspase-8 controls the gut response to microbial challenges by Tnf-α-dependent and independent pathways. Gut, 2015, 64, 601-610.	12.1	84
63	Systemic and Mucosal Immune Reactivity upon Mycobacterium avium ssp. paratuberculosis Infection in Mice. PLoS ONE, 2014, 9, e94624.	2.5	7
64	Antimicrobial peptides and the enteric mucus layer act in concert to protect the intestinal mucosa. Gut Microbes, 2014, 5, 761-765.	9.8	94
65	Ontogeny of Intestinal Epithelial Innate Immune Responses. Frontiers in Immunology, 2014, 5, 474.	4.8	19
66	Age-Dependent Enterocyte Invasion and Microcolony Formation by Salmonella. PLoS Pathogens, 2014, 10, e1004385.	4.7	67
67	Interleukin-13-Mediated Paneth Cell Degranulation and Antimicrobial Peptide Release. Journal of Innate Immunity, 2014, 6, 530-541.	3.8	32
68	Norovirus Triggered Microbiota-driven Mucosal Inflammation in Interleukin 10-deficient Mice. Inflammatory Bowel Diseases, 2014, 20, 431-443.	1.9	131
69	Experimental Colitis Is Exacerbated by Concomitant Infection with Mycobacterium avium ssp. paratuberculosis. Inflammatory Bowel Diseases, 2014, 20, 1962-1971.	1.9	9
70	Outer Ear Canal Infection with Rhabditis sp. Nematodes in a Human. Journal of Clinical Microbiology, 2014, 52, 1793-1795.	3.9	11
71	Facts, myths and hypotheses on the zoonotic nature of Mycobacterium avium subspecies paratuberculosis. International Journal of Medical Microbiology, 2014, 304, 858-867.	3.6	52
72	TRIF Signaling Drives Homeostatic Intestinal Epithelial Antimicrobial Peptide Expression. Journal of Immunology, 2014, 193, 4223-4234.	0.8	29

#	Article	IF	CITATIONS
73	Gut Microbiota: A Natural Adjuvant for Vaccination. Immunity, 2014, 41, 349-351.	14.3	29
74	Maturation of the enteric mucosal innate immune system during the postnatal period. Immunological Reviews, 2014, 260, 21-34.	6.0	121
75	Handle energy resources with care. Trends in Microbiology, 2014, 22, 5-6.	7.7	0
76	IFIT2 Is an Effector Protein of Type I IFN–Mediated Amplification of Lipopolysaccharide (LPS)-Induced TNF-α Secretion and LPS-Induced Endotoxin Shock. Journal of Immunology, 2013, 191, 3913-3921.	0.8	48
77	The anti-inflammatory effect of the synthetic antimicrobial peptide 19-2.5 in a murine sepsis model: a prospective randomized study. Critical Care, 2013, 17, R3.	5.8	41
78	Preclinical Investigations Reveal the Broad-Spectrum Neutralizing Activity of Peptide Pep19-2.5 on Bacterial Pathogenicity Factors. Antimicrobial Agents and Chemotherapy, 2013, 57, 1480-1487.	3.2	78
79	Duration of Fecal Shedding of Shiga Toxin–Producing Escherichia coli O104:H4 in Patients Infected During the 2011 Outbreak in Germany: A Multicenter Study. Clinical Infectious Diseases, 2013, 56, 1132-1140.	5.8	41
80	Generation of Mouse Small Intestinal Epithelial Cell Lines That Allow the Analysis of Specific Innate Immune Functions. PLoS ONE, 2013, 8, e72700.	2.5	25
81	Age-Dependent TLR3 Expression of the Intestinal Epithelium Contributes to Rotavirus Susceptibility. PLoS Pathogens, 2012, 8, e1002670.	4.7	141
82	Bacterial Cell Wall Compounds as Promising Targets of Antimicrobial Agents II. Immunological and Clinical Aspects. Current Drug Targets, 2012, 13, 1131-1137.	2.1	10
83	MicroRNAâ€146aâ€mediated downregulation of IRAK1 protects mouse and human small intestine against ischemia/reperfusion injury. EMBO Molecular Medicine, 2012, 4, 1308-1319.	6.9	79
84	The mammalian intestinal epithelium as integral player in the establishment and maintenance of host–microbial homeostasis. Seminars in Immunology, 2012, 24, 25-35.	5.6	56
85	Innate immune signalling at the intestinal epithelium in homeostasis and disease. EMBO Reports, 2012, 13, 684-698.	4.5	166
86	The impact of perinatal immune development on mucosal homeostasis and chronic inflammation. Nature Reviews Immunology, 2012, 12, 9-23.	22.7	432
87	Bacterial Cell Wall Compounds as Promising Targets of Antimicrobial Agents I. Antimicrobial Peptides and Lipopolyamines. Current Drug Targets, 2012, 13, 1121-1130.	2.1	62
88	Between vigilance and tolerance: the immune function of the intestinal epithelium. Cellular and Molecular Life Sciences, 2011, 68, 3619-3621.	5.4	3
89	Establishment of intestinal homeostasis during the neonatal period. Cellular and Molecular Life Sciences, 2011, 68, 3699-3712.	5.4	49
90	IFN-λ determines the intestinal epithelial antiviral host defense. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 7944-7949.	7.1	369

#	Article	IF	CITATIONS
91	Cesarean delivery is associated with celiac disease but not inflammatory bowel disease in children. Gut Microbes, 2011, 2, 91-98.	9.8	61
92	A Nod toward understanding Crohn's pathology. Nature Medicine, 2011, 17, 785-787.	30.7	0
93	Control of intestinal Nod2-mediated peptidoglycan recognition by epithelium-associated lymphocytes. Mucosal Immunology, 2011, 4, 325-334.	6.0	21
94	New Antiseptic Peptides To Protect against Endotoxin-Mediated Shock. Antimicrobial Agents and Chemotherapy, 2010, 54, 3817-3824.	3.2	111
95	Potentiation of Epithelial Innate Host Responses by Intercellular Communication. PLoS Pathogens, 2010, 6, e1001194.	4.7	50
96	Cesarean Delivery Is Associated With Celiac Disease but Not Inflammatory Bowel Disease in Children. Pediatrics, 2010, 125, e1433-e1440.	2.1	219
97	miR-146a Mediates Protective Innate ImmuneÂTolerance in the Neonate Intestine. Cell Host and Microbe, 2010, 8, 358-368.	11.0	190
98	O-Antigen Delays Lipopolysaccharide Recognition and Impairs Antibacterial Host Defense in Murine Intestinal Epithelial Cells. PLoS Pathogens, 2009, 5, e1000567.	4.7	60
99	Intravenous Tigecycline as Adjunctive or Alternative Therapy for Severe Refractory <i>Clostridium difficile</i> Infection. Clinical Infectious Diseases, 2009, 48, 1732-1735.	5.8	149
100	Internalization-dependent recognition of <i>Mycobacterium avium</i> ssp. <i>paratuberculosis</i> by intestinal epithelial cells. Cellular Microbiology, 2009, 11, 1802-1815.	2.1	33
101	Secreted enteric antimicrobial activity localises to the mucus surface layer. Gut, 2008, 57, 764-771.	12.1	235
102	Developmental switch of intestinal antimicrobial peptide expression. Journal of Experimental Medicine, 2008, 205, 183-193.	8.5	129
103	Cutting Edge: Instructive Role of Peripheral Tissue Cells in the Imprinting of T Cell Homing Receptor Patterns. Journal of Immunology, 2008, 181, 3745-3749.	0.8	93
104	Identification of heparin/heparan sulfate interacting protein as a major broadâ€ s pectrum antimicrobial protein in lung and small intestine. FASEB Journal, 2008, 22, 2427-2434.	0.5	8
105	TLR4 Facilitates Translocation of Bacteria across Renal Collecting Duct Cells. Journal of the American Society of Nephrology: JASN, 2008, 19, 2364-2374.	6.1	48
106	The function and biological role of toll-like receptors in infectious diseases: an update. Current Opinion in Infectious Diseases, 2008, 21, 304-312.	3.1	17
107	Hormonal control of the renal immune response and antibacterial host defense by arginine vasopressin. Journal of Experimental Medicine, 2007, 204, 2837-2852.	8.5	68
108	Transcription Factor PU.1 Controls Transcription Start Site Positioning and Alternative TLR4 Promoter Usage. Journal of Biological Chemistry, 2007, 282, 26874-26883.	3.4	33

#	Article	IF	CITATIONS
109	Innate immune recognition on the intestinal mucosa. International Journal of Medical Microbiology, 2007, 297, 379-392.	3.6	31
110	Cytokine-mediated control of lipopolysaccharide-induced activation of small intestinal epithelial cells. Immunology, 2007, 122, 306-315.	4.4	33
111	Postnatal acquisition of endotoxin tolerance in intestinal epithelial cells. Journal of Experimental Medicine, 2006, 203, 973-984.	8.5	429
112	Postnatal acquisition of endotoxin tolerance in intestinal epithelial cells. Journal of Cell Biology, 2006, 173, i3-i3.	5.2	2
113	Myeloid differentiation factor 88-dependent signalling controls bacterial growth during colonization and systemic pneumococcal disease in mice. Cellular Microbiology, 2005, 7, 1603-1615.	2.1	103
114	The role of epithelial Toll-like receptor expression in host defense and microbial tolerance. Journal of Endotoxin Research, 2005, 11, 124-128.	2.5	54
115	Bacterial Evasion of Innate Defense at Epithelial Linings. , 2005, 86, 72-98.		14
116	Growth Control of Small-Colony Variants by Genetic Regulation of the Hemin Uptake System. Infection and Immunity, 2004, 72, 2254-2262.	2.2	11
117	Increased diversity of intestinal antimicrobial peptides by covalent dimer formation. Nature Immunology, 2004, 5, 836-843.	14.5	111
118	Toll-like receptor 4-mediated signaling by epithelial surfaces: necessity or threat?. Microbes and Infection, 2003, 5, 951-959.	1.9	102
119	Intracellular Recognition of Lipopolysaccharide by Toll-like Receptor 4 in Intestinal Epithelial Cells. Journal of Experimental Medicine, 2003, 198, 1225-1235.	8.5	301
120	Persistent Infection with Helicobacter Pylori and the Development of Gastric Cancer. Advances in Cancer Research, 2003, 90, 63-89.	5.0	44
121	Toll-like Receptor 4 Resides in the Golgi Apparatus and Colocalizes with Internalized Lipopolysaccharide in Intestinal Epithelial Cells. Journal of Experimental Medicine, 2002, 195, 559-570.	8.5	385
122	Bacterial strategies for overcoming host innate and adaptive immune responses. Nature Immunology, 2002, 3, 1033-1040.	14.5	388
123	Distribution of the outer membrane haem receptor protein ChuA in environmental and human isolates of. International Journal of Medical Microbiology, 2001, 291, 227-230.	3.6	13
124	How neutrophils recognize bacteria and move toward infection. Nature Medicine, 2001, 7, 1182-1184.	30.7	10
125	Humoral Response in a Patient with Cutaneous Nocardiosis. Dermatology, 2000, 200, 78-80.	2.1	9
126	DNA vaccination using coexpression of cytokine genes with a bacterial gene encoding a 60-kDa heat shock protein. Medical Microbiology and Immunology, 2000, 189, 97-104.	4.8	10

#	Article	IF	CITATIONS
127	Triggering the ExoS regulon of Pseudomonas aeruginosa: A GFP-reporter analysis of exoenzyme (Exo) S, ExoT and ExoU synthesis. Microbial Pathogenesis, 2000, 29, 329-343.	2.9	45
128	Specific and Rapid Detection by Fluorescent In Situ Hybridization of Bacteria in Clinical Samples Obtained from Cystic Fibrosis Patients. Journal of Clinical Microbiology, 2000, 38, 818-825.	3.9	164
129	Thyrotoxicosis Induced by Thyroid Involvement of Disseminated <i>Aspergillus fumigatus</i> Infection. Journal of Clinical Microbiology, 2000, 38, 886-887.	3.9	17
130	Significance of Cytoplasmic Staining in the Cytomegalovirus pp65 Antigen Test. European Journal of Clinical Microbiology and Infectious Diseases, 1999, 18, 66-68.	2.9	1
131	Brain Biopsy in Patients With Acquired Immunodeficiency Syndrome. Archives of Internal Medicine, 1999, 159, 2590.	3.8	29
132	Comparison of MB/BacT and BACTEC 460 TB Systems for Recovery of Mycobacteria in a Routine Diagnostic Laboratory. Journal of Clinical Microbiology, 1999, 37, 3711-3712.	3.9	23
133	Yersinia enterocolitica Impairs Activation of Transcription Factor NF-κB: Involvement in the Induction of Programmed Cell Death and in the Suppression of the Macrophage Tumor Necrosis Factor α Production. Journal of Experimental Medicine, 1998, 187, 1069-1079.	8.5	237
134	Epstein-Barr Viral Gene Expression in B-Lymphocytes. Leukemia and Lymphoma, 1998, 30, 123-129.	1.3	13
135	Chronic Prosthetic Hip Infection Caused by a Small-Colony Variant of <i>Escherichia coli</i> . Journal of Clinical Microbiology, 1998, 36, 2530-2534.	3.9	71
136	Lytic Replication of Epstein-Barr Virus in the Peripheral Blood: Analysis of Viral Gene Expression in B Lymphocytes During Infectious Mononucleosis and in the Normal Carrier State. Blood, 1997, 89, 1665-1677.	1.4	76
137	ICAM-1, soluble-CD23, and interleukin-10 concentrations in serum in renal-transplant recipients with Epstein-Barr virus reactivation. Vaccine Journal, 1997, 4, 545-549.	2.6	9
138	Lytic Replication of Epstein-Barr Virus in the Peripheral Blood: Analysis of Viral Gene Expression in B Lymphocytes During Infectious Mononucleosis and in the Normal Carrier State. Blood, 1997, 89, 1665-1677.	1.4	37
139	COINCIDENCE OF EPSTEIN-BARR VIRUS REACTIVATION, CYTOMEGALOVIRUS INFECTION, AND REJECTION EPISODES IN RENAL TRANSPLANT RECIPIENTS. Transplantation, 1995, 60, 474-480.	1.0	61
140	IMMUNOCYTOCHEMICAL DETECTION OF EPSTEIN-BARR VIRUS ANTIGENS IN PERIPHERAL B LYMPHOCYTES AFTER RENAL TRANSPLANTATION. Transplantation, 1995, 59, 138-140.	1.0	9
141	Cytokine production in a whole-blood assay after Epstein-Barr virus infection in vivo. Vaccine Journal, 1995, 2, 209-213.	2.6	36