Masahito Yamazaki

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5248359/publications.pdf Version: 2024-02-01

Μαςαμιτο Υλμαζακι

#	Article	IF	CITATIONS
1	A Single GUV Method for Revealing the Action of Cell-Penetrating Peptides in Biomembranes. Methods in Molecular Biology, 2022, 2383, 167-179.	0.9	3
2	Effect of osmotic pressure on pore formation in lipid bilayers by the antimicrobial peptide magainin 2. Physical Chemistry Chemical Physics, 2022, 24, 6716-6731.	2.8	16
3	Single-Cell Analysis of the Antimicrobial and Bactericidal Activities of the Antimicrobial Peptide Magainin 2. Microbiology Spectrum, 2022, 10, .	3.0	5
4	Effect of Membrane Potential on Entry of Lactoferricin B-Derived 6-Residue Antimicrobial Peptide into Single Escherichia coli Cells and Lipid Vesicles. Journal of Bacteriology, 2021, 203, .	2.2	11
5	Translocation of the nonlabeled antimicrobial peptide PGLa across lipid bilayers and its entry into vesicle lumens without pore formation. Biochimica Et Biophysica Acta - Biomembranes, 2021, 1863, 183680.	2.6	5
6	Sulfur-doped carbon dots@polydopamine-functionalized magnetic silver nanocubes for dual-modality detection of norovirus. Biosensors and Bioelectronics, 2021, 193, 113540.	10.1	36
7	Role of Membrane Potential on Entry of Cell-Penetrating Peptide Transportan 10 into Single Vesicles. Biophysical Journal, 2020, 118, 57-69.	0.5	29
8	Fluorescent and electrochemical dual-mode detection of Chikungunya virus E1 protein using fluorophore-embedded and redox probe-encapsulated liposomes. Mikrochimica Acta, 2020, 187, 674.	5.0	22
9	Effect of membrane potential on pore formation by the antimicrobial peptide magainin 2 in lipid bilayers. Biochimica Et Biophysica Acta - Biomembranes, 2020, 1862, 183381.	2.6	15
10	Membrane Tension in Negatively Charged Lipid Bilayers in a Buffer under Osmotic Pressure. Journal of Physical Chemistry B, 2020, 124, 5588-5599.	2.6	19
11	Action of antimicrobial peptides and cell-penetrating peptides on membrane potential revealed by the single GUV method. Biophysical Reviews, 2020, 12, 339-348.	3.2	24
12	Use of Target-Specific Liposome and Magnetic Nanoparticle Conjugation for the Amplified Detection of Norovirus. ACS Applied Bio Materials, 2020, 3, 3560-3568.	4.6	13
13	Detection of the Entry of Nonlabeled Transportan 10 into Single Vesicles. Biochemistry, 2020, 59, 1780-1790.	2.5	7
14	Membrane potential is vital for rapid permeabilization of plasma membranes and lipid bilayers by the antimicrobial peptide lactoferricin B. Journal of Biological Chemistry, 2019, 294, 10449-10462.	3.4	24
15	Effect of Transmembrane Asymmetric Distribution of Lipids and Peptides on Lipid Bilayers. Journal of Physical Chemistry B, 2019, 123, 4645-4652.	2.6	4
16	The role of membrane tension in the action of antimicrobial peptides and cell-penetrating peptides in biomembranes. Biophysical Reviews, 2019, 11, 431-448.	3.2	35
17	Elementary Processes and Mechanisms of Interactions of Antimicrobial Peptides with Membranes—Single Giant Unilamellar Vesicle Studies—. Advances in Experimental Medicine and Biology, 2019, 1117, 17-32.	1.6	10
18	Elementary processes for the entry of cell-penetrating peptides into lipid bilayer vesicles and bacterial cells. Applied Microbiology and Biotechnology, 2018, 102, 3879-3892.	3.6	41

MASAHITO YAMAZAKI

#	Article	IF	CITATIONS
19	Continuous detection of entry of cell-penetrating peptide transportan 10 into single vesicles. Chemistry and Physics of Lipids, 2018, 212, 120-129.	3.2	24
20	Mechanism of Initial Stage of Pore Formation Induced by Antimicrobial Peptide Magainin 2. Langmuir, 2018, 34, 3349-3362.	3.5	75
21	Elementary processes of antimicrobial peptide PGLa-induced pore formation in lipid bilayers. Biochimica Et Biophysica Acta - Biomembranes, 2018, 1860, 2262-2271.	2.6	25
22	Effect of membrane tension on transbilayer movement of lipids. Journal of Chemical Physics, 2018, 148, 245101.	3.0	11
23	Effects of Mechanical Properties of Lipid Bilayers on the Entry of Cell-Penetrating Peptides into Single Vesicles. Langmuir, 2017, 33, 2433-2443.	3.5	46
24	Low-pH-Induced Lamellar to Bicontinuous Primitive Cubic Phase Transition in Dioleoylphosphatidylserine/Monoolein Membranes. Langmuir, 2017, 33, 12487-12496.	3.5	12
25	Entry of a Six-Residue Antimicrobial Peptide Derived from Lactoferricin B into Single Vesicles and <i>Escherichia coli</i> Cells without Damaging their Membranes. Biochemistry, 2017, 56, 4419-4431.	2.5	28
26	Analysis of constant tension-induced rupture of lipid membranes using activation energy. Physical Chemistry Chemical Physics, 2016, 18, 13487-13495.	2.8	40
27	Effects of Lipid Composition on the Entry of Cell-Penetrating Peptide Oligoarginine into Single Vesicles. Biochemistry, 2016, 55, 4154-4165.	2.5	60
28	Experimental Estimation of Membrane Tension Induced by Osmotic Pressure. Biophysical Journal, 2016, 111, 2190-2201.	0.5	67
29	Activation Energy of the Low-pH-Induced Lamellar to Bicontinuous Cubic Phase Transition in Dioleoylphosphatidylserine/Monoolein. Langmuir, 2016, 32, 1327-1337.	3.5	15
30	Electrostatic interaction effects on tension-induced pore formation in lipid membranes. Physical Review E, 2015, 92, 012708.	2.1	43
31	Communication: Activation energy of tension-induced pore formation in lipid membranes. Journal of Chemical Physics, 2015, 143, 081103.	3.0	43
32	Stretch-Activated Pore of the Antimicrobial Peptide, Magainin 2. Langmuir, 2015, 31, 3391-3401.	3.5	102
33	Antimicrobial Peptide Lactoferricin B-Induced Rapid Leakage of Internal Contents from Single Giant Unilamellar Vesicles. Biochemistry, 2015, 54, 5802-5814.	2.5	25
34	A Model for Targeting Colon Carcinoma Cells Using Single-Chain Variable Fragments Anchored on Virus-Like Particles via Glycosyl Phosphatidylinositol Anchor. Pharmaceutical Research, 2014, 31, 2166-2177.	3.5	11
35	The single GUV method for revealing the functions of antimicrobial, pore-forming toxin, and cell-penetrating peptides or proteins. Physical Chemistry Chemical Physics, 2014, 16, 15752-15767.	2.8	79
36	Entry of Cell-Penetrating Peptide Transportan 10 into a Single Vesicle by Translocating Across Lipid Membrane and Its Induced Pores. Biochemistry, 2014, 53, 386-396.	2.5	71

#	Article	IF	CITATIONS
37	Initial Step of pH-Jump-Induced Lamellar to Bicontinuous Cubic Phase Transition in Dioleoylphosphatidylserine/Monoolein. Langmuir, 2014, 30, 8131-8140.	3.5	18
38	2P215 Initial Step of Low pH-Induced Structural Transition from Unilamellar Vesicles of DOPS/MO to Inverse Bicontinuous Cubic Phase(13B. Biological & Artificial membrane:Dynamics,Poster). Seibutsu Butsuri, 2014, 54, S230.	0.1	0
39	Rate Constant of Tension-Induced Pore Formation in Lipid Membranes. Langmuir, 2013, 29, 3848-3852.	3.5	69
40	1P215 Initial Step of Low pH-Induced Lamellar to Bicontinuous Cubic Phase Transition in Dioleoylphosphatidylserine/Monoolein(13B.Biological & Artifical membrane: Dynamics,Poster,The) Tj ETQq(0 0 0.1 gBT	/Overlock 10
41	1P218 Permeation of Cell-Penetrating Peptide Transportan 10 through Lipid Membranes before Pore Formation(13B. Biological & Artifical membrane: Dynamics,Poster). Seibutsu Butsuri, 2013, 53, S142.	0.1	о
42	1P216 Effects of Mechanical Properties of Lipid Membranes on Antimicrobial Peptide Magainin 2-Induced Pore Formation(13B.Biological & Artifical membrane: Dynamics,Poster,The 51st Annual Meeting of) Tj ETQ	գՕ ՓՈ rgB	8T /@verlock 10
43	1P217 Effects of Electrostatic Interactions on Rate Constants of Tension-Induced Pore Formation in Single GUVs(13B.Biological & Artifical membrane: Dynamics,Poster,The 51st Annual Meeting of the) Tj ETQ	q1 d.0.7 8	43 b4 rgBT /O
44	The Single-Giant Unilamellar Vesicle Method Reveals Lysenin-Induced Pore Formation in Lipid Membranes Containing Sphingomyelin. Biochemistry, 2012, 51, 5160-5172.	2.5	44
45	2A1536 Dependence of Lysenin-Induced Membrane Permeability on Cholesterol and Lysenin Concentration in the Membrane Surface(Biol & Artifi memb 2: Structure & Property, Dynamics,) Tj ETQ 2011. 51. S74.	2q1_10.78	34314 rgBT ,○
46	2A1548 Effects of Binding of Magainin 2 to Lipid Membranes on Surface Area and Volume of Single GUVs(Biol & Artifi memb 2: Structure & Property, Dynamics, Signal transduction,The 48th) Tj ETQq0 0	0 ngBT /C)verbock 10 Tf
47	Kinetics of low pH-induced lamellar to bicontinuous cubic phase transition in dioleoylphosphatidylserine/monoolein. Journal of Chemical Physics, 2011, 134, 145102.	3.0	15
48	Spontaneous insertion of lipopolysaccharide into lipid membranes from aqueous solution. Chemistry and Physics of Lipids, 2011, 164, 166-174.	3.2	29
49	A membrane filtering method for the purification of giant unilamellar vesicles. Chemistry and Physics of Lipids, 2011, 164, 351-358.	3.2	94
50	Phase Transition in Di-oleoylphosphatidylglycerol/Monoolein Membranes due to Interactions of Positively Charged Peptides at their Lipid Membrane-Interface. Bangladesh Journal of Scientific and Industrial Research, 2010, 45, 219-224.	0.3	0
51	Kinetic Pathway of Antimicrobial Peptide Magainin 2-Induced Pore Formation in Lipid Membranes. Journal of Physical Chemistry B, 2010, 114, 12018-12026.	2.6	122
52	Chapter 7 Transformation Between Liposomes and Cubic Phases of Biological Lipid Membranes Induced by Modulation of Electrostatic Interactions. Behavior Research Methods, 2009, , 163-209.	4.0	10
53	Magainin 2-Induced Pore Formation in the Lipid Membranes Depends on Its Concentration in the Membrane Interface. Journal of Physical Chemistry B, 2009, 113, 4846-4852.	2.6	131
54	The size of the pore in lipid membranes induced by antimicrobial peptide magainin 2. , 2009, , .		0

#	Article	IF	CITATIONS
55	High affinity Zn2+ inhibitory site(s) for the trypsin-like peptidase of the 20S proteasome. Archives of Biochemistry and Biophysics, 2008, 477, 113-120.	3.0	3
56	Low-pH-Induced Transformation of Bilayer Membrane into Bicontinuous Cubic Phase in Dioleoylphosphatidylserine/Monoolein Membranes. Langmuir, 2008, 24, 3400-3406.	3.5	26
57	Chapter 5 The Single Guv Method to Reveal Elementary Processes of Leakage of Internal Contents from Liposomes Induced by Antimicrobial Substances. Behavior Research Methods, 2008, , 121-142.	4.0	34
58	Water permeability of lipid membranes of GUVs and its dependence on actin cytoskeletons inside the GUVs. , 2008, , .		2
59	1P-213 Interaction of Cell Penerating Peptide, Transportan 10, with single GUVs of lipid membrane(The) Tj ETQq1	1,0,7843	314 rgBT /O
60	1P-210 Effects of Surface Charge Density of Lipid Membranes on the Pore Formation Induced by Magainin 2 : the Single GUV Method Study (2)(The 46th Annual Meeting of the Biophysical Society of) Tj ETQq0 (0 @.n gBT /0	Oværlock 10
61	2P272 Characterization of the pore in lipid mamabranes induced by antimicrobialpeptide, magainin 2(Native and artificial biomembranes-dynamics,Poster Presentations). Seibutsu Butsuri, 2007, 47, S181.	0.1	1
62	Effects of Surface Charge Density of Lipid Membranes on the Pore Formation Induced by Magainin 2. , 2007, , .		1
63	Vesicle Fission of Giant Unilamellar Vesicles of Liquid-Ordered-Phase Membranes Induced by Amphiphiles with a Single Long Hydrocarbon Chain. Langmuir, 2007, 23, 720-728.	3.5	61
64	Single GUV Method Reveals Interaction of Tea Catechin (â^')-Epigallocatechin Gallate with Lipid Membranes. Biophysical Journal, 2007, 92, 3178-3194.	0.5	135
65	Single Giant Unilamellar Vesicle Method Reveals Effect of Antimicrobial Peptide, Magainin 2, and Antibacterial Substance, Tea Catechin, on Membrane Permeability and Membrane Structure. , 2006, , .		0
66	The "Le Chatelier's Principle―Governed Response of Actin Filaments to Osmotic Stress. Journal of Physical Chemistry B, 2006, 110, 13572-13581.	2.6	6
67	1P309 Elasticity of Solutions of Actin Filaments with Polymorphous Assembly Structures(10.) Tj ETQq1 1 0.7843 2006, 46, S224.	14 rgBT /C 0.1	Overlock 10 0
68	The Single GUV Method for Probing Biomembrane Structure and Function. E-Journal of Surface Science and Nanotechnology, 2005, 3, 218-227.	0.4	15
69	The effect of peptides and ions interacting with an electrically neutral membrane interface on the structure and stability of lipid membranes in the liquid-crystalline phase and in the liquid-ordered phase. Journal of Physics Condensed Matter, 2005, 17, S2979-S2989.	1.8	3
70	Design and Facile Synthesis of Neoglycolipids as Lactosylceramide Mimetics and Their Transformation into Glycoliposomes. Bioscience, Biotechnology and Biochemistry, 2005, 69, 166-178.	1.3	21
71	Effect of Positively Charged Short Peptides on Stability of Cubic Phases of Monoolein/Dioleoylphosphatidic Acid Mixtures. Langmuir, 2005, 21, 5290-5297.	3.5	26
72	Formation of Cubic Phases from Large Unilamellar Vesicles of Dioleoylphosphatidylglycerol/Monoolein Membranes Induced by Low Concentrations of Ca2+. Langmuir, 2005, 21, 11556-11561.	3.5	53

MASAHITO YAMAZAKI

#	Article	IF	CITATIONS
73	Single Giant Unilamellar Vesicle Method Reveals Effect of Antimicrobial Peptide Magainin 2 on Membrane Permeabilityâ€. Biochemistry, 2005, 44, 15823-15833.	2.5	213
74	Cationic DMPC/DMTAP Lipid Bilayers:Â Local Lateral Polarization of Phosphatidylcholine Headgroups. Langmuir, 2005, 21, 5677-5680.	3.5	16
75	Membrane Fusion of Ciant Liposomes of Neutral Phospholipid Membranes Induced by La3+ and Cd3+. AIP Conference Proceedings, 2004, , .	0.4	0
76	Electrostatic Effects in Phase Transitions of Biomembranes between Cubic Phases and Lamellar Liquid-Crystalline (Lα) phase. AIP Conference Proceedings, 2004, , .	0.4	0
77	Low pH Stabilizes the Inverted Hexagonal II Phase in Dipalmitoleoylphosphatidylethanolamine Membrane. Journal of Biological Physics, 2004, 30, 377-386.	1.5	1
78	Optical nanospectroscopy applications in material science. Applied Surface Science, 2004, 234, 374-386.	6.1	2
79	Low concentration of dioleoylphosphatidic acid induces an inverted hexagonal (HII) phase transition in dipalmitoleoylphosphatidylethanolamine membranes. Biophysical Chemistry, 2004, 109, 149-155.	2.8	5
80	Lipid Membrane Formation by Vesicle Fusion on Silicon Dioxide Surfaces Modified with Alkyl Self-Assembled Monolayer Islands. Langmuir, 2004, 20, 7526-7531.	3.5	45
81	Shape Changes and Vesicle Fission of Giant Unilamellar Vesicles of Liquid-Ordered Phase Membrane Induced by Lysophosphatidylcholine. Langmuir, 2004, 20, 9526-9534.	3.5	90
82	Membrane Fusion of Giant Unilamellar Vesicles of Neutral Phospholipid Membranes Induced by La3+. Langmuir, 2004, 20, 5160-5164.	3.5	94
83	Stability of giant unilamellar vesicles and large unilamellar vesicles of liquid-ordered phase membranes in the presence of Triton X-100. Biochimica Et Biophysica Acta - Biomembranes, 2004, 1667, 1-6.	2.6	36
84	Effect of de Novo Designed Peptides Interacting with the Lipid-Membrane Interface on the Stability of the Cubic Phases of the Monoolein Membrane. Langmuir, 2003, 19, 4745-4753.	3.5	32
85	Atomic force microscopy studies of interaction of the 20S proteasome with supported lipid bilayers. Biochimica Et Biophysica Acta - Biomembranes, 2003, 1615, 1-6.	2.6	19
86	Mechanical response of single filamin A (ABP-280) molecules and its role in the actin cytoskeleton. , 2003, , 525-534.		14
87	Shape Changes of Giant Unilamellar Vesicles of Phosphatidylcholine Induced by a De Novo Designed Peptide Interacting with Their Membrane Interface. Langmuir, 2002, 18, 9638-9641.	3.5	58
88	A new method for the preparation of giant liposomes in high salt concentrations and growth of protein microcrystals in them. Biochimica Et Biophysica Acta - Biomembranes, 2002, 1561, 129-134.	2.6	103
89	La3+ and Gd3+ induce shape change of giant unilamellar vesicles of phosphatidylcholine. Biochimica Et Biophysica Acta - Biomembranes, 2002, 1564, 173-182.	2.6	94
90	A model of pressure-induced interdigitation of phospholipid membranes. Chemical Physics Letters, 2002, 360, 515-520.	2.6	5

MASAHITO YAMAZAKI

#	Article	IF	CITATIONS
91	Effect of electrostatic interactions on phase stability of cubic phases of biomembranes. Journal of Biological Physics, 2002, 28, 253-266.	1.5	2
92	Mechanical response of single filamin A (ABP-280) molecules and its role in the actin cytoskeleton. Journal of Muscle Research and Cell Motility, 2002, 23, 525-534.	2.0	37
93	Effect of Electrostatic Interactions on Phase Stability of Cubic Phases of Membranes of Monoolein/Dioleoylphosphatidic Acid Mixtures. Biophysical Journal, 2001, 81, 983-993.	0.5	60
94	Mechanical unfolding of single filamin A (ABP-280) molecules detected by atomic force microscopy. FEBS Letters, 2001, 498, 72-75.	2.8	112
95	La3+ stabilizes the hexagonal II (HII) phase in phosphatidylethanolamine membranes. Biochimica Et Biophysica Acta - Biomembranes, 2001, 1515, 189-201.	2.6	17
96	The mechanism of the stabilization of the hexagonal II (H II) phase in phosphatidylethanolamine membranes in the presence of low concentrations of dimethyl sulfoxide. European Biophysics Journal, 2001, 30, 207-220.	2.2	40
97	1K1130 Effects of Electrostatic Interaction and Peptide-Membrane Interaction onPhase Stability and Structure of Cubic Phases of Lipid Membranes. Seibutsu Butsuri, 2000, 40, S84.	0.1	0
98	Low concentration of DMSO stabilizes the bilayer gel phase rather than the interdigitated gel phase in dihexadecylphosphatidylcholine membrane. Biochimica Et Biophysica Acta - Biomembranes, 2000, 1467, 395-405.	2.6	39
99	Effects of solvents interacting favorably with hydrophilic segments of the membrane surface of phosphatidylcholine on their gel-phase membranes in water. Biophysical Chemistry, 1999, 81, 191-196.	2.8	10
100	Effects of electrostatic interaction on the phase stability and structures of cubic phases of monoolein/oleic acid mixture membranes. Biochimica Et Biophysica Acta - Biomembranes, 1999, 1461, 96-102.	2.6	65
101	Low pH Induces an Interdigitated Gel to Bilayer Gel Phase Transition in Dihexadecylphosphatidylcholine Membrane. Biophysical Journal, 1999, 77, 2015-2023.	0.5	55
102	Intermembrane distance in multilamellar vesicles of phosphatidylcholine depends on the interaction free energy between solvents and the hydrophilic segments of the membrane surface. Biophysical Chemistry, 1998, 74, 237-249.	2.8	30
103	Ion Permeability of a Membrane with Soft Polar Interfaces. 2. The Polar Zones as the Rate-Determining Step. Langmuir, 1998, 14, 4630-4637.	3.5	3
104	Phase transition between hexagonal II(HII) and liquid-crystalline phase induced by interaction between solvents and segments of the membrane surface of dioleoylphosphatidylethanolamine. Biochimica Et Biophysica Acta - Biomembranes, 1997, 1330, 199-206.	2.6	20
105	Osmotic stress induces a phase transition from interdigitated gel phase to bilayer gel phase in multilamellar vesicles of dihexadecylphosphatidylcholine. Biophysical Chemistry, 1997, 65, 229-233.	2.8	12
106	Interaction of the surface of biomembrane with solvents: structure of multilamellar vesicles of dipalmitoylphosphatidylcholine in acetone-water mixtures. Chemistry and Physics of Lipids, 1997, 85, 53-65.	3.2	24
107	Polymorphism of F-Actin Assembly. 1. A Quantitative Phase Diagram of F-Actin. Biochemistry, 1996, 35, 5238-5244.	2.5	22
108	Organic solvents induce interdigitated gel structures in multilamellar vesicles of dipalmitoylphosphatidylcholine. Biochimica Et Biophysica Acta - Biomembranes, 1996, 1284, 233-239.	2.6	38

ΜΑΣΑΗΙΤΟ ΥΑΜΑΖΑΚΙ

#	Article	IF	CITATIONS
109	Formation of ion channels in lipid bilayers by a peptide with the predicted transmembrane sequence of botulinum neurotoxin A. Protein Science, 1995, 4, 1490-1497.	7.6	60
110	Direct evidence of induction of interdigitated gel structure in large unilamellar vesicles of dipalmitoylphosphatidylcholine by ethanol: studies by excimer method and high-resolution electron cryomicroscopy. Biophysical Journal, 1994, 66, 729-733.	0.5	42
111	Effect of oligomers of ethylene glycol on thermotropic phase transition of dipalmitoylphosphatidylcholine multilamellar vesicles. Biochimica Et Biophysica Acta - Biomembranes, 1992, 1109, 43-47.	2.6	9
112	Studies of alcohol-induced interdigitated gel phase in phosphatidylcholine multilamellar vesicles by the excimer method. Biochimica Et Biophysica Acta - Biomembranes, 1992, 1106, 94-98.	2.6	24
113	Phase transitions of phospholipid vesicles under osmotic stress and in the presence of ethylene glycol. Biophysical Chemistry, 1992, 43, 29-37.	2.8	54
114	Phase separation of triton X-100 micelle solution induced by osmotic stress. Biochimica Et Biophysica Acta - Biomembranes, 1991, 1063, 175-177.	2.6	10
115	Deformation and instability of membrane structure of phospholipid vesicles caused by osmophobic association: mechanical stress model for the mechanism of poly(ethylene glycol)-induced membrane fusion. Biochemistry, 1990, 29, 1309-1314.	2.5	106
116	Poly(ethylene glycol)-induced shrinkage of Sephadex gel. A model system for quantitative analysis of osmoelastic coupling. Biophysical Journal, 1989, 56, 707-711.	0.5	17
117	Osmoelastic coupling in biological structures: a comprehensive thermodynamic analysis of the osmotic response of phospholipid vesicles and a reevaluation of the "dehydration force" theory. Biochemistry, 1989, 28, 5626-5630.	2.5	28
118	Osmoelastic coupling in biological structures: decrease in membrane fluidity and osmophobic association of phospholipid vesicles in response to osmotic stress. Biochemistry, 1989, 28, 3710-3715.	2.5	73
119	Osmoelastic coupling in biological structures: formation of parallel bundles of actin filaments in a	2.5	80