Yasutomo Yamamoto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5247980/publications.pdf

Version: 2024-02-01

55 papers

1,341 citations

304743

22

h-index

35 g-index

77 all docs

77 docs citations

77 times ranked 874 citing authors

#	Article	IF	CITATIONS
1	Chiral carbene approach to gold-catalyzed asymmetric cyclization of 1,6-enynes. Tetrahedron Letters, 2010, 51, 404-406.	1.4	100
2	Radical Addition of Ethers to Imines Initiated by Dimethylzinc. Organic Letters, 2002, 4, 3509-3511.	4.6	98
3	Initiator-Dependent Chemoselective Addition of THF Radical to Aldehyde and Aldimine and Its Application to a Three-Component Reaction. Organic Letters, 2003, 5, 1797-1799.	4.6	89
4	Introduction of Functionalized C1, C2, and C3 Units to Imines through the Dimethylzincâ^'Air-Initiated Radical Addition. Journal of Organic Chemistry, 2004, 69, 1531-1534.	3.2	77
5	Asymmetric Radical Addition of Ethers to EnantiopureN-p-Toluenesulfinyl Aldimines, Mediated by Dimethylzincâ^'Air. Organic Letters, 2006, 8, 5729-5732.	4.6	67
6	Tin-Free Intermolecular Addition of Primary Alkyls to Imines via the Dimethylzincâ-'Air Radical Process. Organic Letters, 2006, 8, 87-89.	4.6	61
7	Chiral N-Heterocyclic CarbeneⰠCopper(I)-Catalyzed Asymmetric Allylic Arylation of Aliphatic Allylic Bromides: Steric and Electronic Effects on γ-Selectivity. Journal of Organic Chemistry, 2011, 76, 1398-1408.	3.2	57
8	Asymmetric Construction of Quaternary Carbon Centers by Sequential Conjugate Addition of Lithium Amide and in Situ Alkylation: Utility in the Synthesis of (â^')-Aspidospermidine. Organic Letters, 2009, 11, 653-655.	4.6	50
9	Unexpected reaction of a dimethylzinc-generated THF radical with aldehydes. Tetrahedron Letters, 2004, 45, 795-797.	1.4	47
10	Direct aminoalkylation of cycloalkanes through dimethylzinc-initiated radical process. Tetrahedron Letters, 2004, 45, 6595-6597.	1.4	41
11	Dimethylzinc-initiated radical reaction of cyclic ethers with arylamines, alkoxyamines, and dialkylhydrazines. Tetrahedron, 2005, 61, 379-384.	1.9	38
12	Chemoselective Conjugate Addition of Dimethylzinc-Mediated Ether and Acetal Radicals to Alkylidenemalonates and Asymmetric Reactions. Journal of Organic Chemistry, 2008, 73, 9535-9538.	3.2	37
13	Enantioselective Conjugate Addition of a Lithium Ester Enolate Catalyzed by Chiral Lithium Amides: A Possible Intermediate Characterized. Organic Letters, 2009, 11, 1907-1910.	4.6	34
14	Steric tuning of C2-symmetric chiral N-heterocyclic carbene in gold-catalyzed asymmetric cyclization of 1,6-enynes. Tetrahedron, 2012, 68, 4159-4165.	1.9	34
15	Steric Tuning of the Amidomonophosphane-Rhodium(I) Catalyst in Asymmetric Addition of Arylboroxines to <i>N</i> -Phosphinoyl Aldimines. Organic Letters, 2009, 11, 4470-4473.	4.6	33
16	Conjugate addition reaction of THF-2-yl radical with α,β-unsaturated N-tosyl imines using a dimethylzinc–air initiator. Tetrahedron, 2008, 64, 7258-7265.	1.9	32
17	Radical Reactions Initiated by Dimethylzinc. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2004, 62, 1158-1165.	0.1	28
18	Consecutive Cyclization of Allylaminoalkene by Intramolecular Aminolithiationâ^'Carbolithiation. Organic Letters, 2008, 10, 3635-3638.	4.6	27

#	Article	IF	Citations
19	Total Synthesis of (â^²)â€Kopsinine by an Asymmetric Oneâ€Pot [N+2+3] Cyclization. Chemistry - an Asian Journal, 2012, 7, 2196-2198.	3.3	27
20	Tandem conjugate addition–aldol cyclization of 2-formylbenzylidenemalonate with ether radicals by the mediation of dimethylzinc. Tetrahedron, 2009, 65, 903-908.	1.9	26
21	High Performance of N-Alkoxycarbonyl-imines in Triethylborane-Mediated Tin-Free Radical Addition. Journal of Organic Chemistry, 2012, 77, 1547-1553.	3.2	25
22	Stereoselective Formal Synthesis of (+)-Allokainic Acid <i>via</i> Thiol-Mediated Acyl Radical Cyclization. Chemical and Pharmaceutical Bulletin, 2010, 58, 1511-1516.	1.3	23
23	A ternary complex reagent for an asymmetric Michael reaction of lithium ester enolates with enoates. Tetrahedron Letters, 2008, 49, 4582-4584.	1.4	22
24	Iron chloride enhancement of dimethylzinc-mediated radical conjugate addition of ethers and an amine to alkylidenemalonates. Tetrahedron Letters, 2009, 50, 6040-6043.	1.4	21
25	Steric influence of N-phosphorus-arylimines on the rhodium-catalyzed asymmetric arylation. Tetrahedron, 2011, 67, 6469-6473.	1.9	20
26	Stereoselective Radical Addition of an Acetal to Sterically Tuned Enantiomerically Pure N-Sulfinyl Imines. Chemical and Pharmaceutical Bulletin, 2010, 58, 265-269.	1.3	18
27	Rhodium-catalyzed asymmetric phenylation of N-phosphinoylarylimines with triphenylborane. Catalysis Science and Technology, 2011, 1, 62.	4.1	18
28	A short synthesis of $(+)$ - \hat{l}^2 -lycorane by asymmetric conjugate addition cascade. Tetrahedron, 2015, 71, 7222-7226.	1.9	18
29	Catalytic Asymmetric Synthesis of (S)-Laudanosine by Hydroamination. Heterocycles, 2012, 86, 469.	0.7	17
30	General Entry to Asymmetric One-Pot [N+ 2 +n] Cyclization for the Synthesis of Three- to Seven-Membered Azacycloalkanes. Journal of Organic Chemistry, 2012, 77, 7212-7222.	3.2	17
31	Asymmetric Construction of Three Contiguous Stereogenic Centers by Conjugate Additionâ^'Alkylation of Lithium Ester Enolate. Organic Letters, 2009, 11, 2007-2009.	4.6	14
32	Radical One-Pot $\hat{l}\pm,\hat{l}^2$ -Dual and \hat{l}^2 -Mono-Oxymethylation of Alkylidenemalonate. Journal of Organic Chemistry, 2012, 77, 5775-5780.	3.2	14
33	Critical profiles of chiral diether-mediated asymmetric conjugate aminolithiation of enoate with lithium amide as a key to the total synthesis of (â^')-kopsinine. Tetrahedron, 2013, 69, 3264-3273.	1.9	14
34	NMR studies of a ternary complex reagent of lithium ester enolate, chiral diether, and lithium diisopropylamide in an asymmetric Michael reaction. Tetrahedron, 2010, 66, 2470-2473.	1.9	13
35	Chiral Amidophosphane-Rhodium(I)-Catalyzed Asymmetric Conjugate Arylation of Acyclic Enones with Arylboronic Acids. Chemical and Pharmaceutical Bulletin, 2009, 57, 1024-1027.	1.3	11
36	Aminolithiation of carbon-carbon double bonds as a powerful tool in organic synthesis. Pure and Applied Chemistry, 2009, 81, 247-253.	1.9	10

#	Article	IF	CITATIONS
37	NMR studies on the structure of a lithium amide–chiral diether complex for an asymmetric reaction. Tetrahedron, 2013, 69, 3836-3840.	1.9	10
38	Asymmetric Construction of Binaphthyl by the Chiral Diether-Mediated Conjugate Addition of Naphthyllithium to Naphthalenecarboxylic Acid 2,6-Di-t-butyl-4-methoxyphenyl Ester. Chemical and Pharmaceutical Bulletin, 2009, 57, 752-754.	1.3	9
39	Total Synthesis of 8-epi-Javaberine A and Javaberine A. Heterocycles, 2014, 88, 1311.	0.7	8
40	One-pot synthesis of N-heterocycles by tandem carbamoylation–oxidative bromolactamization of ω-alkenylmagnesium bromide. Tetrahedron Letters, 2013, 54, 4313-4315.	1.4	6
41	Cyclic Model for the Asymmetric Conjugate Addition of Organolithiums with Enoates. Synthesis, 2015, 47, 2256-2264.	2.3	6
42	Addition and in situ halo-cyclization of i‰-alkenyl Grignard reagents with aldehydes, ketones, carbon dioxide, and azodicarboxylate. New Journal of Chemistry, 2013, 37, 3873.	2.8	5
43	Enhancement of self-assembly and gelation ability of N,N'-didodecanoyl ethylenediamine organogelator by terminal functionalization. Tetrahedron Letters, 2016, 57, 5889-5892.	1.4	5
44	Asymmetric total synthesis of (\hat{a}^2) -javaberine A and (\hat{a}^2) -epi-javaberine A based on catalytic intramolecular hydroamination of N-methyl-2-(2-styrylaryl)ethylamine. Tetrahedron, 2021, 90, 132165.	1.9	4
45	Stereoselective Synthesis of Diastereomeric Berberine Alkaloids, O-Methylcorytenchirine and Coralydine. Heterocycles, 2021, 103, 817.	0.7	2
46	Stereoselective Construction of a Berberine C-8 Benzyl Group for the Synthesis of Javaberine Derivatives. Heterocycles, 2020, 101, 512.	0.7	2
47	Phosphazene base-catalyzed hydroamination of aminoalkenes for the construction of isoindoline scaffolds: Application to the total synthesis of aristocularine. Tetrahedron Letters, 2022, 89, 153599.	1.4	2
48	Cyclic Model for the Asymmetric Conjugate Addition of Organolithiums with Enoates. Synthesis, 2015, 47, e5-e5.	2.3	1
49	Consecutive Aminolithiation–Carbolithiation of a Linear Aminoalkene Bearing Terminal Vinyl Sulfide Moiety to Give HydroÂɨndolizine. Synlett, 2017, 28, 2913-2917.	1.8	1
50	Aminolithiation–arylation consecutive cyclization of N-(2-fluorophenyl)methylaminoalkylstyryls giving aryl-substituted pyrido[1,2-b]isoquinolines. Tetrahedron, 2018, 74, 5309-5318.	1.9	1
51	Radical Addition of Ethers to Imines Initiated by Dimethylzinc ChemInform, 2003, 34, no.	0.0	0
52	Initiator-Dependent Chemoselective Addition of THF Radical to Aldehyde and Aldimine and Its Application to a Three-Component Reaction ChemInform, 2003, 34, no.	0.0	0
53	Unexpected Reaction of a Dimethylzinc-Generated THF Radical with Aldehydes ChemInform, 2004, 35, no.	0.0	0
54	Radical Reactions Initiated by Dimethylzinc. ChemInform, 2005, 36, no.	0.0	0

 #	Article	IF	CITATIONS
55	Dimethylzinc-Initiated Radical Reaction of Cyclic Ethers with Arylamines, Alkoxyamines, and Dialkylhydrazines ChemInform, 2005, 36, no.	0.0	0