Nicholas E Dixon

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5247748/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Production of long linear DNA substrates with site-specific chemical lesions for single-molecule replisome studies. Methods in Enzymology, 2022, , 299-315.	1.0	2
2	Mechanism of transcription modulation by the transcription-repair coupling factor. Nucleic Acids Research, 2022, 50, 5688-5712.	14.5	6
3	DnaB helicase dynamics in bacterial DNA replication resolved by single-molecule studies. Nucleic Acids Research, 2021, 49, 6804-6816.	14.5	18
4	Single-Molecule Insights Into the Dynamics of Replicative Helicases. Frontiers in Molecular Biosciences, 2021, 8, 741718.	3.5	5
5	Multiple classes and isoforms of the RNA polymerase recycling motor protein HelD. MicrobiologyOpen, 2021, 10, e1251.	3.0	1
6	Genetic Encoding of <i>para</i> -Pentafluorosulfanyl Phenylalanine: A Highly Hydrophobic and Strongly Electronegative Group for Stable Protein Interactions. Journal of the American Chemical Society, 2020, 142, 17277-17281.	13.7	22
7	A Primase-Induced Conformational Switch Controls the Stability of the Bacterial Replisome. Molecular Cell, 2020, 79, 140-154.e7.	9.7	18
8	Development of a single-stranded DNA-binding protein fluorescent fusion toolbox. Nucleic Acids Research, 2020, 48, 6053-6067.	14.5	16
9	Recycling of single-stranded DNA-binding protein by the bacterial replisome. Nucleic Acids Research, 2019, 47, 4111-4123.	14.5	51
10	Nuclease dead Cas9 is a programmable roadblock for DNA replication. Scientific Reports, 2019, 9, 13292.	3.3	45
11	A gatekeeping function of the replicative polymerase controls pathway choice in the resolution of lesion-stalled replisomes. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 25591-25601.	7.1	17
12	Dynamics of Proofreading by the E.Âcoli Pol III Replicase. Cell Chemical Biology, 2018, 25, 57-66.e4.	5.2	13
13	What is all this fuss about Tus? Comparison of recent findings from biophysical and biochemical experiments. Critical Reviews in Biochemistry and Molecular Biology, 2018, 53, 49-63.	5.2	13
14	Bacterial replisomes. Current Opinion in Structural Biology, 2018, 53, 159-168.	5.7	32
15	Structure-activity relationships of pyrazole-4-carbodithioates as antibacterials against methicillin–resistant Staphylococcus aureus. Bioorganic and Medicinal Chemistry Letters, 2018, 28, 3526-3528.	2.2	10
16	Crystal structures and biochemical characterization of DNA sliding clamps from three Gram-negative bacterial pathogens. Journal of Structural Biology, 2018, 204, 396-405.	2.8	6
17	Rational Design of a 310 -Helical PIP-Box Mimetic Targeting PCNA, the Human Sliding Clamp. Chemistry - A European Journal, 2018, 24, 11238-11238.	3.3	0
18	Design of DNA rolling-circle templates with controlled fork topology to study mechanisms of DNA replication. Analytical Biochemistry, 2018, 557, 42-45.	2.4	19

#	Article	IF	CITATIONS
19	Fragment-Based Discovery of Inhibitors of the Bacterial DnaG-SSB Interaction. Antibiotics, 2018, 7, 14.	3.7	14
20	Rational Design of a 3 ₁₀ â€Helical PIPâ€Box Mimetic Targeting PCNA, the Human Sliding Clamp. Chemistry - A European Journal, 2018, 24, 11325-11331.	3.3	16
21	Single-molecule visualization of fast polymerase turnover in the bacterial replisome. ELife, 2017, 6, .	6.0	107
22	Frontispiz: Zuordnung der Rückgrat- und Seitenketten-Protonen in vollstädig protonierten Proteinen durch Festkörper-NMR-Spektroskopie: Mikrokristalle, Sedimente und Amyloidfibrillen. Angewandte Chemie, 2016, 128, .	2.0	0
23	Frontispiece: NMR Spectroscopic Assignment of Backbone and Side-Chain Protons in Fully Protonated Proteins: Microcrystals, Sedimented Assemblies, and Amyloid Fibrils. Angewandte Chemie - International Edition, 2016, 55, .	13.8	2
24	NMR Spectroscopic Assignment of Backbone and Sideâ€Chain Protons in Fully Protonated Proteins: Microcrystals, Sedimented Assemblies, and Amyloid Fibrils. Angewandte Chemie - International Edition, 2016, 55, 15504-15509.	13.8	116
25	Zuordnung der Rückgrat―und Seitenkettenâ€Protonen in vollstädig protonierten Proteinen durch Festkörperâ€NMRâ€&pektroskopie: Mikrokristalle, Sedimente und Amyloidfibrillen. Angewandte Chemie, 2016, 128, 15730-15735.	2.0	18
26	Weak and Transient Protein Interactions Determined by Solidâ€State NMR. Angewandte Chemie - International Edition, 2016, 55, 6638-6641.	13.8	28
27	The E. coli DNA Replication Fork. The Enzymes, 2016, 39, 31-88.	1.7	65
28	Weak and Transient Protein Interactions Determined by Solid‧tate NMR. Angewandte Chemie, 2016, 128, 6750-6753.	2.0	14
29	Exchange between <i>Escherichia coli</i> polymerases II and III on a processivity clamp. Nucleic Acids Research, 2016, 44, 1681-1690.	14.5	32
30	Two mechanisms coordinate replication termination by the <i>Escherichia coli</i> Tus– <i>Ter</i> complex. Nucleic Acids Research, 2015, 43, 5924-5935.	14.5	18
31	Probing molecular choreography through single-molecule biochemistry. Nature Structural and Molecular Biology, 2015, 22, 948-952.	8.2	26
32	Roquin binds microRNA-146a and Argonaute2 to regulate microRNA homeostasis. Nature Communications, 2015, 6, 6253.	12.8	59
33	Bacterial Sliding Clamp Inhibitors that Mimic the Sequential Binding Mechanism of Endogenous Linear Motifs. Journal of Medicinal Chemistry, 2015, 58, 4693-4702.	6.4	28
34	Protein residue linking in a single spectrum for magic-angle spinning NMR assignment. Journal of Biomolecular NMR, 2015, 62, 253-261.	2.8	44
35	Strand separation establishes a sustained lock at the Tus–Ter replication fork barrier. Nature Chemical Biology, 2015, 11, 579-585.	8.0	38
36	Replisome speed determines the efficiency of the Tusâ^'Ter replication termination barrier. Nature, 2015, 525, 394-398.	27.8	42

#	Article	IF	CITATIONS
37	An investigation into the interactions of gold nanoparticles and anti-arthritic drugs with macrophages, and their reactivity towards thioredoxin reductase. Journal of Inorganic Biochemistry, 2015, 142, 28-38.	3.5	42
38	Structure and function of a spectrin-like regulator of bacterial cytokinesis. Nature Communications, 2014, 5, 5421.	12.8	41
39	Loading Dynamics of a Sliding DNA Clamp. Angewandte Chemie - International Edition, 2014, 53, 6768-6771.	13.8	14
40	Polymerase exchange on single DNA molecules reveals processivity clamp control of translesion synthesis. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 7647-7652.	7.1	76
41	Intramolecular binding mode of the C-terminus of <i>Escherichia coli</i> single-stranded DNA binding protein determined by nuclear magnetic resonance spectroscopy. Nucleic Acids Research, 2014, 42, 2750-2757.	14.5	36
42	<scp>AtfA</scp> , a new factor in global regulation of transcription in <scp><i>A</i></scp> <i>ci>einetobacter</i> spp. Molecular Microbiology, 2014, 93, 1130-1143.	2.5	6
43	Discovery of Lead Compounds Targeting the Bacterial Sliding Clamp Using a Fragment-Based Approach. Journal of Medicinal Chemistry, 2014, 57, 2799-2806.	6.4	49
44	Bound or Free: Interaction of the C-Terminal Domain ofEscherichia coliSingle-Stranded DNA-Binding Protein (SSB) with the Tetrameric Core of SSB. Biochemistry, 2014, 53, 1925-1934.	2.5	52
45	Roadblocks on the E.Coli Genome: The Workings of a Molecular Mouse Trap at the Single-Molecule Level. Biophysical Journal, 2014, 106, 230a.	0.5	0
46	DNA Replication Is the Target for the Antibacterial Effects of Nonsteroidal Anti-Inflammatory Drugs. Chemistry and Biology, 2014, 21, 481-487.	6.0	102
47	<i>Escherichia coli</i> Single-Stranded DNA-Binding Protein: NanoESI-MS Studies of Salt-Modulated Subunit Exchange and DNA Binding Transactions. Journal of the American Society for Mass Spectrometry, 2013, 24, 274-285.	2.8	34
48	A direct proofreader–clamp interaction stabilizes the Pol III replicase in the polymerization mode. EMBO Journal, 2013, 32, 1322-1333.	7.8	85
49	Replicative DNA Polymerases. Cold Spring Harbor Perspectives in Biology, 2013, 5, a012799-a012799.	5.5	92
50	Proofreading exonuclease on a tether: the complex between the E. coli DNA polymerase III subunits α, Îμ, Î, and β reveals a highly flexible arrangement of the proofreading domain. Nucleic Acids Research, 2013, 41, 5354-5367.	14.5	34
51	Characterization of Cleavage Events in the Multifunctional Cilium Adhesin Mhp684 (P146) Reveals a Mechanism by Which Mycoplasma hyopneumoniae Regulates Surface Topography. MBio, 2012, 3, .	4.1	54
52	Architecture and Conservation of the Bacterial DNA Replication Machinery, an Underexploited Drug Target. Current Drug Targets, 2012, 13, 352-372.	2.1	104
53	Backbone Assignment of Fully Protonated Solid Proteins by ¹ H Detection and Ultrafast Magicâ€Angleâ€Spinning NMR Spectroscopy. Angewandte Chemie - International Edition, 2012, 51, 10756-10759.	13.8	95
54	High-yield cell-free protein synthesis for site-specific incorporation of unnatural amino acids at two sites. Biochemical and Biophysical Research Communications, 2012, 418, 652-656.	2.1	49

#	Article	IF	CITATIONS
55	Priming the Engine of DNA Synthesis. Structure, 2012, 20, 1447-1448.	3.3	1
56	Mhp182 (P102) binds fibronectin and contributes to the recruitment of plasmin(ogen) to the Mycoplasma hyopneumoniae cell surface. Cellular Microbiology, 2012, 14, 81-94.	2.1	76
57	A New Role for the Proofreader in Bacterial DNA Replication. FASEB Journal, 2012, 26, 739.4.	0.5	0
58	Binding Inhibitors of the Bacterial Sliding Clamp by Design. Journal of Medicinal Chemistry, 2011, 54, 4831-4838.	6.4	38
59	Incorporation of chlorinated analogues of aliphatic amino acids during cell-free protein synthesis. Chemical Communications, 2011, 47, 1839-1841.	4.1	14
60	<i>E. coli</i> DNA replication in the absence of free Î ² clamps. EMBO Journal, 2011, 30, 1830-1840.	7.8	42
61	Improving a Natural Enzyme Activity through Incorporation of Unnatural Amino Acids. Journal of the American Chemical Society, 2011, 133, 326-333.	13.7	77
62	EX1 hydrogen–deuterium exchange in an all-helical protein and its cyclized derivative at neutral pH. International Journal of Mass Spectrometry, 2011, 302, 149-156.	1.5	0
63	Mhp107 Is a Member of the Multifunctional Adhesin Family of Mycoplasma hyopneumoniae. Journal of Biological Chemistry, 2011, 286, 10097-10104.	3.4	46
64	A Single Subunit Directs the Assembly of the Escherichia coli DNA Sliding Clamp Loader. Structure, 2010, 18, 285-292.	3.3	20
65	Chaperonin-encapsulation of proteins for NMR. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2010, 1804, 866-871.	2.3	10
66	The ROQUIN family of proteins localizes to stress granules via the ROQ domain and binds target mRNAs. FEBS Journal, 2010, 277, 2109-2127.	4.7	69
67	Repeat regions R1 and R2 in the P97 paralogue Mhp271 of <i>Mycoplasma hyopneumoniae</i> bind heparin, fibronectin and porcine cilia. Molecular Microbiology, 2010, 78, 444-458.	2.5	74
68	2P001 1F1450 A cell-free system for highly efficient incorporation of unnatural amino acids for studies of protein-protein interactions(The 48th Annual Meeting of the Biophysical Society of Japan). Seibutsu Butsuri, 2010, 50, S82.	0.1	0
69	A Processed Multidomain Mycoplasma hyopneumoniae Adhesin Binds Fibronectin, Plasminogen, and Swine Respiratory Cilia. Journal of Biological Chemistry, 2010, 285, 33971-33978.	3.4	77
70	Essential Biological Processes of an Emerging Pathogen: DNA Replication, Transcription, and Cell Division in <i>Acinetobacter</i> spp. Microbiology and Molecular Biology Reviews, 2010, 74, 273-297.	6.6	68
71	Nanometer-Scale Distance Measurements in Proteins Using Gd ³⁺ Spin Labeling. Journal of the American Chemical Society, 2010, 132, 9040-9048.	13.7	143
72	Ultrasensitive detection of antibodies using a new Tus–Ter-lock immunoPCR system. Molecular BioSystems, 2010, 6, 1173.	2.9	27

#	Article	IF	CITATIONS
73	Subunit exchange and DNAâ€binding dynamics of Escherichia coli singleâ€stranded DNA binding protein (SSB). FASEB Journal, 2010, 24, .	0.5	0
74	Synthesis and Applications of Covalent Protein-DNA Conjugates. Australian Journal of Chemistry, 2009, 62, 1328.	0.9	9
75	A novel zinc-binding fold in the helicase interaction domain of the Bacillus subtilis Dnal helicase loader. Nucleic Acids Research, 2009, 37, 2395-2404.	14.5	16
76	Defining the Structural Basis of Human Plasminogen Binding by Streptococcal Surface Enolase. Journal of Biological Chemistry, 2009, 284, 17129-17137.	3.4	61
77	Real-time single-molecule observation of rolling-circle DNA replication. Nucleic Acids Research, 2009, 37, e27-e27.	14.5	102
78	Prime-time looping. Nature, 2009, 462, 854-855.	27.8	15
79	Cell-free synthesis and combinatorial selective 15N-labeling of the cytotoxic protein amoebapore A from Entamoeba histolytica. Protein Expression and Purification, 2009, 68, 22-27.	1.3	18
80	Site-specific covalent attachment of DNA to proteins using a photoactivatable Tus–Ter complex. Chemical Communications, 2009, , 3050.	4.1	25
81	Application of electrospray ionization mass spectrometry to study the hydrophobic interaction between the $l\mu$ and l_s subunits of DNA polymerase III. Protein Science, 2008, 13, 2878-2887.	7.6	24
82	Single-molecule studies of fork dynamics in Escherichia coli DNA replication. Nature Structural and Molecular Biology, 2008, 15, 170-176.	8.2	136
83	Hydrolysis of the 5′-p-nitrophenyl ester of TMP by oligoribonucleases (ORN) from Escherichia coli, Mycobacterium smegmatis, and human. Protein Expression and Purification, 2008, 57, 180-187.	1.3	10
84	Characterization of Gibberellin Receptor Mutants of Barley (Hordeum vulgare L.). Molecular Plant, 2008, 1, 285-294.	8.3	47
85	The proofreading exonuclease subunit ε of Escherichia coli DNA polymerase III is tethered to the polymerase subunit α via a flexible linker. Nucleic Acids Research, 2008, 36, 5074-5082.	14.5	27
86	Cell-Free Protein Synthesis for Analysis by NMR Spectroscopy. Methods in Molecular Biology, 2008, 426, 257-268.	0.9	60
87	Mechanistic Aspects of Termination of E. coli DNA Replication. FASEB Journal, 2008, 22, 111.3.	0.5	0
88	Introduction to Trifluoromethanesulfonates and Trifluoromethanesulfonato-O Complexes. Inorganic Syntheses, 2007, , 243-250.	0.3	12
89	The unstructured C-terminus of the Ï., subunit of Escherichia coli DNA polymerase III holoenzyme is the site of interaction with the α subunit. Nucleic Acids Research, 2007, 35, 2813-2824.	14.5	53
90	Solution structure of Domains IVa and V of the Ï,, subunit of Escherichia coli DNA polymerase III and interaction with the α subunit. Nucleic Acids Research, 2007, 35, 2825-2832.	14.5	39

#	Article	IF	CITATIONS
91	Cobalt(III) Amine Complexes with Coordinated Trifluoromethanesulfonate. Inorganic Syntheses, 2007, , 103-107.	0.3	11
92	NMR Detection of Protein15N Spins near Paramagnetic Lanthanide Ions. Journal of the American Chemical Society, 2007, 129, 462-463.	13.7	16
93	Trifluoromethanesulfonates and Trifluoromethanesulfonato-O Complexes. Inorganic Syntheses, 2007, , 70-76.	0.3	21
94	Sequence-Specific and Stereospecific Assignment of Methyl Groups Using Paramagnetic Lanthanides. Journal of the American Chemical Society, 2007, 129, 13749-13757.	13.7	59
95	Cell-Free Transcription/Translation from PCR-Amplified DNA for High-Throughput NMR Studies. Angewandte Chemie - International Edition, 2007, 46, 3356-3358.	13.8	69
96	Multiple oligomeric forms ofEscherichia coli DnaB helicase revealed by electrospray ionisation mass spectrometry. Rapid Communications in Mass Spectrometry, 2007, 21, 132-140.	1.5	8
97	Measurement of dissociation constants of high-molecular weight protein–protein complexes by transferred 15N-relaxation. Journal of Biomolecular NMR, 2007, 38, 65-72.	2.8	18
98	Effect of protein stabilization on charge state distribution in positive- and negative-ion electrospray ionization mass spectra. Journal of the American Society for Mass Spectrometry, 2007, 18, 1605-1611.	2.8	18
99	Proteomic dissection of DNA polymerization. Expert Review of Proteomics, 2006, 3, 197-211.	3.0	11
100	Kinetic and Crystallographic Analysis of MutantEscherichia coliAminopeptidase P:Â Insights into Substrate Recognition and the Mechanism of Catalysisâ€. Biochemistry, 2006, 45, 964-975.	2.5	41
101	Structure Determination of Proteinâ [°] Ligand Complexes by Transferred Paramagnetic Shifts. Journal of the American Chemical Society, 2006, 128, 12910-12916.	13.7	102
102	Lanthanide Labeling Offers Fast NMR Approach to 3D Structure Determinations of Proteinâ^'Protein Complexes. Journal of the American Chemical Society, 2006, 128, 3696-3702.	13.7	125
103	A Molecular Mousetrap Determines Polarity of Termination of DNA Replication in E. coli. Cell, 2006, 125, 1309-1319.	28.9	114
104	15N-Labelled proteins by cell-free protein synthesis FEBS Journal, 2006, 273, 4154-4159.	4.7	66
105	Cell-free protein synthesis. FEBS Journal, 2006, 273, 4131-4132.	4.7	3
106	Monomeric solution structure of the helicase-binding domain of Escherichia coli DnaG primase. FEBS Journal, 2006, 273, 4997-5009.	4.7	25
107	Amino-acid Type Identification in 15N-HSQC Spectra by Combinatorial Selective 15N-labelling. Journal of Biomolecular NMR, 2006, 34, 13-21.	2.8	55
108	Efficient χ-tensor determination and NH assignment of paramagnetic proteins. Journal of Biomolecular NMR, 2006, 35, 79-87.	2.8	56

#	Article	IF	CITATIONS
109	Assignment of paramagnetic 15N-HSQC spectra by heteronuclear exchange spectroscopy. Journal of Biomolecular NMR, 2006, 37, 43-51.	2.8	15
110	Site-Specific Labelling of Proteins with a Rigid Lanthanide-Binding Tag. ChemBioChem, 2006, 7, 1599-1604.	2.6	82
111	Helicase binding to Dnal exposes a cryptic DNA-binding site during helicase loading in Bacillus subtilis. Nucleic Acids Research, 2006, 34, 5247-5258.	14.5	50
112	Structure of the Î, Subunit of Escherichia coli DNA Polymerase III in Complex with the ε Subunit. Journal of Bacteriology, 2006, 188, 4464-4473.	2.2	26
113	A molecular mousetrap determines polarity of replication fork arrest at Tus― <i>Ter</i> sites in <i>E. coli</i> . FASEB Journal, 2006, 20, A911.	0.5	0
114	Protein – Protein Interactions in the Eubacterial Replisome. IUBMB Life, 2005, 57, 5-12.	3.4	74
115	Conservation of Eubacterial Replicases. IUBMB Life, 2005, 57, 413-419.	3.4	32
116	Cell-free synthesis of 15 N-labeled proteins for NMR studies. IUBMB Life, 2005, 57, 615-622.	3.4	35
117	Synthesis and properties of crosslinked recombinant pro-resilin. Nature, 2005, 437, 999-1002.	27.8	496
118	Translational incorporation of L-3,4-dihydroxyphenylalanine into proteins. FEBS Journal, 2005, 272, 3162-3171.	4.7	64
119	Cell-free Protein Synthesis in an Autoinduction System for NMR Studies of Protein–Protein Interactions. Journal of Biomolecular NMR, 2005, 32, 235-241.	2.8	32
120	A Complex Mechanism Determines Polarity of DNA Replication Fork Arrest by the Replication Terminator Complex of Bacillus subtilis. Journal of Biological Chemistry, 2005, 280, 13105-13113.	3.4	11
121	Crystal and Solution Structures of the Helicase-binding Domain of Escherichia coli Primase. Journal of Biological Chemistry, 2005, 280, 11495-11504.	3.4	62
122	Replication Termination in Escherichia coli : Structure and Antihelicase Activity of the Tus- Ter Complex. Microbiology and Molecular Biology Reviews, 2005, 69, 501-526.	6.6	142
123	Weak Alignment of Paramagnetic Proteins Warrants Correction for Residual CSA Effects in Measurements of Pseudocontact Shifts. Journal of the American Chemical Society, 2005, 127, 17190-17191.	13.7	56
124	Integron-associated Mobile Gene Cassettes Code for Folded Proteins: The Structure of Bal32a, a New Member of the Adaptable α+β Barrel Family. Journal of Molecular Biology, 2005, 346, 1229-1241.	4.2	20
125	Stabilization of Native Protein Fold by Intein-Mediated Covalent Cyclization. Journal of Molecular Biology, 2005, 346, 1095-1108.	4.2	42
126	Optimization of an Escherichia coli system for cell-free synthesis of selectively 15N-labelled proteins for rapid analysis by NMR spectroscopy. FEBS Journal, 2004, 271, 4084-4093.	0.2	87

#	Article	IF	CITATIONS
127	Fast Structure-Based Assignment of15N HSQC Spectra of Selectively15N-Labeled Paramagnetic Proteins. Journal of the American Chemical Society, 2004, 126, 2963-2970.	13.7	83
128	Expression, purification, crystallization, and NMR studies of the helicase interaction domain of Escherichia coli DnaG primase. Protein Expression and Purification, 2004, 33, 304-310.	1.3	11
129	Inhibition of Protein Interactions with the β2 Sliding Clamp of Escherichia coli DNA Polymerase III by Peptides from β2-Binding Proteins. Biochemistry, 2004, 43, 5661-5671.	2.5	76
130	Molecular cloning and expression of the dihydrofolate reductase (DHFR) gene from adult buffalo fly (Haematobia irritans exigua): effects of antifolates. Insect Molecular Biology, 2003, 12, 173-183.	2.0	5
131	Flexibility revealed by the 1.85â€Ã crystal structure of the β sliding-clamp subunit ofEscherichia coliDNA polymerase III. Acta Crystallographica Section D: Biological Crystallography, 2003, 59, 1192-1199.	2.5	64
132	In Vivo Protein Cyclization Promoted by a Circularly Permuted Synechocystis sp. PCC6803 DnaB Mini-intein. Journal of Biological Chemistry, 2002, 277, 7790-7798.	3.4	66
133	2R1415 In vitro expression of various proteins for NMR measurements. Seibutsu Butsuri, 2002, 42, S149.	0.1	0
134	Hydrolysis of the 5â€~-p-Nitrophenyl Ester of TMP by the Proofreading Exonuclease (Îμ) Subunit ofEscherichia coliDNA Polymerase IIIâ€. Biochemistry, 2002, 41, 5266-5275.	2.5	61
135	NMR analysis of in vitro-synthesized proteins without purification: a high-throughput approach. FEBS Letters, 2002, 524, 159-162.	2.8	69
136	Structural Basis for Proofreading during Replication of the Escherichia coli Chromosome. Structure, 2002, 10, 535-546.	3.3	137
137	Use of electrospray ionization mass spectrometry to study binding interactions between a replication terminator protein and DNA. Protein Science, 2002, 11, 147-157.	7.6	24
138	Use of electrospray ionization mass spectrometry to study binding interactions between a replication terminator protein and DNA. Protein Science, 2002, 11, 147-157.	7.6	52
139	Disproportionation of a Model Chromium(V) Complex Causes Extensive Chromium(III)-DNA Binding in Vitro. Chemical Research in Toxicology, 2001, 14, 946-950.	3.3	32
140	Chromium(VI) Reduction by Catechol(amine)s Results in DNA Cleavage in Vitro:  Relevance to Chromium Genotoxicity. Chemical Research in Toxicology, 2001, 14, 500-510.	3.3	44
141	The DnaB·DnaC complex: a structure based on dimers assembled around an occluded channel. EMBO Journal, 2001, 20, 1462-1468.	7.8	71
142	A universal protein-protein interaction motif in the eubacterial DNA replication and repair systems. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 11627-11632.	7.1	293
143	DNA Interactions and Bacterial Mutagenicity of Some Chromium(III) Imine Complexes and their Chromium(V) Analogues. Evidence for Chromium(V) Intermediates in the Genotoxicity of Chromium(III). Australian Journal of Chemistry, 2000, 53, 411.	0.9	33
144	pH-controlled quaternary states of hexameric DnaB helicase. Journal of Molecular Biology, 2000, 303, 383-393.	4.2	27

#	Article	IF	CITATIONS
145	Preliminary X-Ray Crystallographic and NMR Studies on the Exonuclease Domain of the ϵ Subunit of Escherichia coli DNA Polymerase III. Journal of Structural Biology, 2000, 131, 164-169.	2.8	14
146	Interaction of substituted cobalt(III) cage complexes with DNA â€. Dalton Transactions RSC, 2000, , 2085-2089.	2.3	25
147	Interaction of theEscherichia coliReplication Terminator Protein (Tus) with DNA:Â A Model Derived from DNA-Binding Studies of Mutant Proteins by Surface Plasmon Resonanceâ€. Biochemistry, 2000, 39, 11989-11999.	2.5	154
148	Disproportionation and Nuclease Activity of Bis[2-ethyl-2-hydroxybutanoato(2â^')]oxochromate(V) in Neutral Aqueous Solutions1. Inorganic Chemistry, 2000, 39, 385-395.	4.0	53
149	NMR solution structure of the Î, subunit of DNA polymerase III from <i>Escherichia coli</i> . Protein Science, 2000, 9, 721-733.	7.6	17
150	NMR structure of the N-terminal domain of E. coli DnaB helicase: implications for structure rearrangements in the helicase hexamer. Structure, 1999, 7, 681-690.	3.3	62
151	In Vitro Plasmid DNA Cleavage by Chromium(V) and -(IV) 2-Hydroxycarboxylato Complexes. Chemical Research in Toxicology, 1999, 12, 371-381.	3.3	57
152	Backbone NMR assignments and secondary structure of the N-terminal domain of DnaB helicase from E. coli. Journal of Biomolecular NMR, 1998, 11, 233-234.	2.8	10
153	Three-dimensional reconstructions from cryoelectron microscopy images reveal an intimate complex between helicase DnaB and its loading partner DnaC. Structure, 1998, 6, 501-509.	3.3	72
154	Spectroscopic identification of a dinuclear metal centre in manganese(II)-activated aminopeptidase P from Escherichia coli: implications for human prolidase. Journal of Biological Inorganic Chemistry, 1998, 3, 470-483.	2.6	39
155	Structure and mechanism of a proline-specific aminopeptidase from Escherichia coli. Proceedings of the United States of America, 1998, 95, 3472-3477.	7.1	180
156	Precise Limits of the N-Terminal Domain of DnaB Helicase Determined by NMR Spectroscopy. Biochemical and Biophysical Research Communications, 1997, 231, 126-130.	2.1	21
157	Crystal structure of cytoplasmic Escherichia coli peptidyl-prolyl isomerase: evidence for decreased mobility of loops upon complexation. Journal of Molecular Biology, 1997, 271, 258-265.	4.2	34
158	Stable high-copy-number bacteriophage λ promoter vectors for overproduction of proteins in Escherichia coli. Gene, 1996, 176, 49-53.	2.2	96
159	DNA hydrolysis by stable metal complexes. Chemical Communications, 1996, , 1287.	4.1	51
160	X-ray structure of the signal transduction protein from Escherichia coli at 1.9 Ã Acta Crystallographica Section D: Biological Crystallography, 1996, 52, 93-104.	2.5	58
161	Distribution of the flavohaemoglobin, HMP, between periplasm and cytoplasm inEscherichia coli. FEMS Microbiology Letters, 1995, 125, 219-224.	1.8	19
162	Crystal Structure ofEscherichia coliQOR Quinone Oxidoreductase Complexed with NADPH. Journal of Molecular Biology, 1995, 249, 785-799.	4.2	107

#	Article	IF	CITATIONS
163	A Structural Model for the Escherichia coli DnaB Helicase Based on Electron Microscopy Data. Journal of Structural Biology, 1995, 114, 167-176.	2.8	142
164	Distribution of the flavohaemoglobin, HMP, between periplasm and cytoplasm in Escherichia coli. FEMS Microbiology Letters, 1995, 125, 219-224.	1.8	0
165	Structure of the Escherichia coli signal transducing protein PII. Structure, 1994, 2, 981-990.	3.3	84
166	Internal symmetry of the molecular chaperone cpn60 (GroEL) determined by X-ray crystallography. Acta Crystallographica Section D: Biological Crystallography, 1994, 50, 591-595.	2.5	0
167	Crystallization and Low Temperature Diffraction Studies of the DNA Binding Domain of the Single-stranded DNA Binding Protein from Escherichia coli. Journal of Molecular Biology, 1994, 240, 396-399.	4.2	8
168	Crystallization and Preliminary X-ray Diffraction Studies on a Soluble Escherichia coli Quinone Oxidoreductase. Journal of Molecular Biology, 1994, 240, 501-503.	4.2	10
169	Escherichia coliPIIprotein: purification, crystallization and oligomeric structure. FEBS Letters, 1994, 337, 255-258.	2.8	30
170	The symmetry of Escherichia coli cpn60 (GroEL) determined by X-ray crystallography. Journal of Molecular Biology, 1994, 235, 47-52.	4.2	14
171	Crystallization and preliminary X-ray investigation of theEscherichia colimolecular chaperone cpn60 (GroEL). FEBS Letters, 1993, 320, 160-164.	2.8	10
172	The 92-min region of the Escherichia coli chromosome: location and cloning of the ubi and alr. Gene, 1993, 129, 9-16.	2.2	34
173	Strand switching of a replicative DNA helicase promoted by the E. coli primosome. Cell, 1993, 74, 713-722.	28.9	21
174	Substoichiometric amounts of the molecular chaperones GroEL and GroES prevent thermal denaturation and aggregation of mammalian mitochondrial malate dehydrogenase in vitro Proceedings of the National Academy of Sciences of the United States of America, 1993, 90, 2276-2280.	7.1	71
175	In vitro DNA damage and mutations induced by a macrocyclic tetraamide chromium(V) complex: implications for the role of Cr(V) peptide complexes in chromium-induced cancers. Carcinogenesis, 1993, 14, 1875-1880.	2.8	53
176	Suppression by vanadium(IV) of chromium(V)-mediated DNA cleavage and chromium(VI/V)-induced mutagenesis. Synthesis and crystal structure of the vanadium(IV) complex (NH4)[V(O){HOC(Et)2COO}{OC(Et)2COO}]. Inorganic Chemistry, 1992, 31, 4906-4908.	4.0	51
177	Enriched sources of Escherichia coli replication proteins. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1992, 1132, 17-25.	2.4	54
178	Isolation and nucleotide sequence of the hmp gene that encodes a haemoglobin-like protein in Escherichia coli K-12. Molecular Genetics and Genomics, 1991, 226-226, 49-58.	2.4	191
179	Modified bacteriophage lambda promoter vectors for overproduction of proteins in Escherichia coli. Gene, 1990, 87, 123-126.	2.2	131
180	Chromium(V)-induced cleavage of DNA: are chromium(V) complexes the active carcinogens in chromium(VI)-induced cancers?. Chemical Research in Toxicology, 1989, 2, 227-229.	3.3	131

#	Article	IF	CITATIONS
181	Purification of the phoU protein, a negative regulator of the pho regulon of Escherichia coli K-12. Journal of Bacteriology, 1986, 168, 631-635.	2.2	20
182	Molecular cloning of the phosphate (inorganic) transport (pit) gene of Escherichia coli K12. Molecular Genetics and Genomics, 1986, 204, 477-484.	2.4	37
183	Synthetically versatile (trifluoromethanesulfonato)metal amine complexes. Inorganic Chemistry, 1984, 23, 2940-2947.	4.0	75
184	Protein HU in the enzymatic replication of the chromosomal origin of Escherichia coli Proceedings of the National Academy of Sciences of the United States of America, 1984, 81, 424-428.	7.1	184
185	Jack bean urease VII. Light scattering and nickel(II) spectrum Thiolate → nickel(II) charge-transfer peaks in the spectrum of the β-mercaptoethanol-urease complex. BBA - Proteins and Proteomics, 1983, 744, 219-229.	2.1	40
186	(Trifluoromethanesulfonato-O)pentaammine complexes: versatile synthetic intermediates. Inorganic Chemistry, 1983, 22, 846-847.	4.0	43
187	Synthesis, linkage isomerism, and ligand reactivity of (urea)pentaamminerhodium(III) complexes. Journal of the American Chemical Society, 1983, 105, 5347-5353.	13.7	28
188	Base-catalyzed hydration of cobalt(III)-coordinated dimethylcyanamide and linkage isomerization of the derived N-bound dimethylurea complex. Inorganic Chemistry, 1983, 22, 4038-4046.	4.0	39
189	Base hydrolysis of pentaamminecobalt(II) complexes of urea, dimethyl sulfoxide and trimethyl phosphate. Inorganic Chemistry, 1982, 21, 688-697.	4.0	40
190	Cobalt(III)-promoted synthesis of .betacarboxyaspartic acid. Intramolecular addition of coordinated amide ion to the olefin center in the (3,3-bis(ethoxycarbonyl)-2-propenoato)pentaaminecobalt(III) ion. Journal of the American Chemical Society, 1982, 104, 6716-6725.	13.7	11
191	Labile (trifluoromethanesulfonato)cobalt(III) amine complexes. Inorganic Chemistry, 1981, 20, 470-476.	4.0	104
192	Erratums: Jack bean urease (EC 3.5.1.5). V. On the mechanism of action of urease on urea, formamide, acetamide, <i>N</i> -methylurea, and related compounds. Canadian Journal of Biochemistry, 1981, 59, 564-564.	1.4	5
193	Jack bean urease (EC 3.5.1.5). V. On the mechanism of action of urease on urea, formamide, acetamide, <i>N</i> -methylurea, and related compounds. Canadian Journal of Biochemistry, 1980, 58, 1335-1344.	1.4	219
194	Jack bean urease (EC 3.5.1.5). IV. The molecular size and the mechanism of inhibition by hydroxamic acids. Spectrophotometric titration of enzymes with reversible inhibitors. Canadian Journal of Biochemistry, 1980, 58, 1323-1334.	1.4	136
195	Jack bean urease (EC 3.5.1.5). III. The involvement of active-site nickel ion in inhibition by β-mercaptoethanol, phosphoramidate, and fluoride. Canadian Journal of Biochemistry, 1980, 58, 481-488.	1.4	113
196	Jack bean urease (EC 3.5.1.5). I. A simple dry ashing procedure for the microdetermination of trace metals in proteins. The nickel content of urease. Canadian Journal of Biochemistry, 1980, 58, 469-473.	1.4	39
197	Jack bean urease (EC 3.5.1.5). II. The relationship between nickel, enzymatic activity, and the "abnormal" ultraviolet spectrum. The nickel content of jack beans. Canadian Journal of Biochemistry, 1980, 58, 474-480.	1.4	70
198	Metal ions in enzymes using ammonia or amides. Science, 1976, 191, 1144-1150.	12.6	91

#	Article	IF	CITATIONS
199	Inhibition of jack bean urease (EC 3.5.1.5) by acetohydroxamic acid and by phosphoramidate. Equivalent weight for urease. Journal of the American Chemical Society, 1975, 97, 4130-4131.	13.7	107
200	Jack bean urease (EC 3.5.1.5). Metalloenzyme. Simple biological role for nickel. Journal of the American Chemical Society, 1975, 97, 4131-4133.	13.7	771