Christopher M Jackson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5247520/publications.pdf

Version: 2024-02-01

55 3,539 20 papers citations h-index

56 56 5436
all docs docs citations times ranked citing authors

51

g-index

#	Article	IF	CITATIONS
1	Synergy between glutamate modulation and anti–programmed cell death protein 1 immunotherapy for glioblastoma. Journal of Neurosurgery, 2022, 136, 379-388.	1.6	11
2	The safety and efficacy of dexamethasone in the perioperative management of glioma patients. Journal of Neurosurgery, 2022, 136, 1062-1069.	1.6	7
3	Pediatric glioblastoma: mechanisms of immune evasion and potential therapeutic opportunities. Cancer Immunology, Immunotherapy, 2022, 71, 1813-1822.	4.2	5
4	Novel Predictive Models for High-Value Care Outcomes Following Glioblastoma Resection. World Neurosurgery, 2022, 161, e572-e579.	1.3	4
5	Predicting High-Value Care Outcomes After Surgery for Non–Skull Base Meningiomas. World Neurosurgery, 2022, 159, e130-e138.	1.3	3
6	ATRX loss promotes immunosuppressive mechanisms in IDH1 mutant glioma. Neuro-Oncology, 2022, 24, 888-900.	1.2	20
7	Social determinants of health and the prediction of 90-day mortality among brain tumor patients. Journal of Neurosurgery, 2022, 137, 1338-1346.	1.6	6
8	The potential for immune checkpoint modulators in cerebrovascular injury and inflammation. Expert Opinion on Therapeutic Targets, 2021, 25, 101-113.	3.4	13
9	Sustained localized delivery of immunotherapy to lymph nodes reverses immunosuppression and increases long-term survival in murine glioblastoma. Oncolmmunology, 2021, 10, 1940673.	4.6	7
10	Combination checkpoint therapy with anti-PD-1 and anti-BTLA results in a synergistic therapeutic effect against murine glioblastoma. Oncolmmunology, 2021, 10, 1956142.	4.6	22
11	Monocyte-based inflammatory indices predict outcomes following aneurysmal subarachnoid hemorrhage. Neurosurgical Review, 2021, 44, 3499-3507.	2.4	22
12	Application of unruptured aneurysm scoring systems to a cohort of ruptured aneurysms: are we underestimating rupture risk?. Neurosurgical Review, 2021, 44, 3487-3498.	2.4	14
13	Bone Cement Internal Auditory Canal Reconstruction to Reduce CSF Leak After Vestibular Schwannoma Retrosigmoid Approach. Otology and Neurotology, 2021, 42, e1101-e1105.	1.3	3
14	A Crowdsourced Consensus on Supratotal Resection Versus Gross Total Resection for Anatomically Distinct Primary Glioblastoma. Neurosurgery, 2021, 89, 712-719.	1.1	19
15	RADI-23. Exploring the optimal timing of routine initial surveillance MRI following treatment of brain metastases with stereotactic radiosurgery: a comparison of two approaches. Neuro-Oncology Advances, 2021, 3, iii23-iii23.	0.7	0
16	RADI-22. Toxicity and local control outcomes for brain metastases managed with resection and aggressive reirradiation after initial radiosurgery failure. Neuro-Oncology Advances, 2021, 3, iii22-iii23.	0.7	0
17	Patient-Specific Factors Drive Intensive Care Unit and Total Hospital Length of Stay in Operative Patients with Brain Tumor. World Neurosurgery, 2021, 153, e338-e348.	1.3	12
18	Epidemiology and outcomes of pediatric intracranial aneurysms: comparison with an adult population in a 30-year, prospective database. Journal of Neurosurgery: Pediatrics, 2021, 28, 685-694.	1.3	7

#	Article	lF	Citations
19	Development of new brain metastases in triple negative breast cancer. Journal of Neuro-Oncology, 2021, 152, 333-338.	2.9	8
20	Aging Patient Population With Ruptured Aneurysms: Trend Over 28 Years. Neurosurgery, 2021, 88, 658-665.	1.1	7
21	PD-1+ Monocytes Mediate Cerebral Vasospasm Following Subarachnoid Hemorrhage. Neurosurgery, 2021, 88, 855-863.	1.1	11
22	Trigeminal Neuralgia: Current Approaches and Emerging Interventions. Journal of Pain Research, 2021, Volume 14, 3437-3463.	2.0	35
23	Absence of Ischemic Injury after Sacrificing the Superior Petrosal Vein during Microvascular Decompression. Operative Neurosurgery, 2020, 18, 316-320.	0.8	12
24	CLEC5A expressed on myeloid cells as a M2 biomarker relates to immunosuppression and decreased survival in patients with glioma. Cancer Gene Therapy, 2020, 27, 669-679.	4.6	15
25	Natural History of Untreated Transverse/Sigmoid Sinus Thrombosis Following Posterior Fossa Surgery: Case Series and Literature Review. Operative Neurosurgery, 2020, 19, 109-116.	0.8	9
26	The Effects of Postoperative Neurological Deficits on Survival in Patients With Single Brain Metastasis. Operative Neurosurgery, 2020, 19, 628-634.	0.8	8
27	Retrosigmoid approach for glycerin rhizotomy in the treatment of trigeminal neuralgia without overt arterial compression: updated case series. Journal of Neurosurgery, 2020, 132, 1227-1233.	1.6	4
28	Mechanisms of immunotherapy resistance: lessons from glioblastoma. Nature Immunology, 2019, 20, 1100-1109.	14.5	421
29	Combination anti-CXCR4 and anti-PD-1 immunotherapy provides survival benefit in glioblastoma through immune cell modulation of tumor microenvironment. Journal of Neuro-Oncology, 2019, 143, 241-249.	2.9	88
30	PD-L1, PD-1, LAG-3, and TIM-3 in Melanoma: Expression in Brain Metastases Compared to Corresponding Extracranial Tumors. Cureus, 2019, 11, e6352.	0.5	7
31	Immunotherapy for Glioblastoma: Playing Chess, Not Checkers. Clinical Cancer Research, 2018, 24, 4059-4061.	7.0	14
32	Contrasting impact of corticosteroids on anti-PD-1 immunotherapy efficacy for tumor histologies located within or outside the central nervous system. Oncolmmunology, 2018, 7, e1500108.	4.6	52
33	TIGIT and PD-1 dual checkpoint blockade enhances antitumor immunity and survival in GBM. Oncolmmunology, 2018, 7, e1466769.	4.6	217
34	Dendritic cell activation enhances anti-PD-1 mediated immunotherapy against glioblastoma. Oncotarget, 2018, 9, 20681-20697.	1.8	63
35	Combination Therapy with Anti-PD-1, Anti-TIM-3, and Focal Radiation Results in Regression of Murine Gliomas. Clinical Cancer Research, 2017, 23, 124-136.	7.0	345
36	Clinical Trials Investigating Immune Checkpoint Blockade in Glioblastoma. Current Treatment Options in Oncology, 2017, 18, 51.	3.0	69

#	Article	IF	CITATIONS
37	IMST-58. MODULATING THE MYELOID COMPARTMENT TO POTENTIATE ANTI-PD1 MEDIATED IMMUNOTHERAPY AGAINST GLIOBLASTOMA. Neuro-Oncology, 2016, 18, vi99-vi99.	1.2	О
38	Anti–PD-1 antitumor immunity is enhanced by local and abrogated by systemic chemotherapy in GBM. Science Translational Medicine, 2016, 8, 370ra180.	12.4	243
39	Systemic Tolerance Mediated by Melanoma Brain Tumors Is Reversible by Radiotherapy and Vaccination. Clinical Cancer Research, 2016, 22, 1161-1172.	7.0	57
40	PD-1, PD-L1, PD-L2 expression in the chordoma microenvironment. Journal of Neuro-Oncology, 2015, 121, 251-259.	2.9	56
41	Focal Radiation Therapy Combined with 4-1BB Activation and CTLA-4 Blockade Yields Long-Term Survival and a Protective Antigen-Specific Memory Response in a Murine Glioma Model. PLoS ONE, 2014, 9, e101764.	2.5	206
42	Lymphocyte Activation Gene 3 (LAG-3) Modulates the Ability of CD4 T-cells to Be Suppressed In Vivo. PLoS ONE, 2014, 9, e109080.	2.5	138
43	STAT3 Activation in Glioblastoma: Biochemical and Therapeutic Implications. Cancers, 2014, 6, 376-395.	3.7	97
44	Immunotherapy for Brain Cancer: Recent Progress and Future Promise. Clinical Cancer Research, 2014, 20, 3651-3659.	7.0	92
45	Metastatic Melanoma to the Brain: Surgery and Radiation Is Still the Standard of Care. Current Treatment Options in Oncology, 2013, 14, 264-279.	3.0	19
46	Anti-PD-1 Blockade and Stereotactic Radiation Produce Long-Term Survival in Mice With Intracranial Gliomas. International Journal of Radiation Oncology Biology Physics, 2013, 86, 343-349.	0.8	757
47	Vaccine strategies for glioblastoma: progress and future directions. Immunotherapy, 2013, 5, 155-167.	2.0	33
48	Strainâ€specific induction of experimental autoimmune prostatitis (EAP) in mice. Prostate, 2013, 73, 651-656.	2.3	13
49	Aneurysm Formation in Proinflammatory, Transgenic Haptoglobin 2-2 Mice. Neurosurgery, 2013, 72, 70-76.	1.1	16
50	Current Trends in Glioblastoma Multiforme Treatment: Radiation Therapy and Immune Checkpoint Inhibitors. Brain Tumor Research and Treatment, 2013, 1, 2.	1.0	15
51	The role of STAT3 activation in modulating the immune microenvironment of GBM. Journal of Neuro-Oncology, 2012, 110, 359-368.	2.9	54
52	Potential Role for STAT3 Inhibitors in Glioblastoma. Neurosurgery Clinics of North America, 2012, 23, 379-389.	1.7	25
53	Clinical Outcomes after Treatment of Germ Cell Tumors. Neurosurgery Clinics of North America, 2011, 22, 385-394.	1.7	12
54	Challenges in Immunotherapy Presented by the Glioblastoma Multiforme Microenvironment. Clinical and Developmental Immunology, $2011, 2011, 1-20$.	3.3	119

#	Article	IF	CITATIONS
55	The Translational Potential of Microglia and Monocyte-Derived Macrophages in Ischemic Stroke. Frontiers in Immunology, 0, 13, .	4.8	27