Dixie L Mager

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5246086/publications.pdf Version: 2024-02-01

DIVIEL MACER

#	Article	IF	CITATIONS
1	Ten things you should know about transposable elements. Genome Biology, 2018, 19, 199.	8.8	817
2	Transposable Elements: An Abundant and Natural Source of Regulatory Sequences for Host Genes. Annual Review of Genetics, 2012, 46, 21-42.	7.6	462
3	DNA Methylation and SETDB1/H3K9me3 Regulate Predominantly Distinct Sets of Genes, Retroelements, and Chimeric Transcripts in mESCs. Cell Stem Cell, 2011, 8, 676-687.	11.1	427
4	Transposable elements in mammals promote regulatory variation and diversification of genes with specialized functions. Trends in Genetics, 2003, 19, 530-536.	6.7	399
5	Retroviral Elements and Their Hosts: Insertional Mutagenesis in the Mouse Germ Line. PLoS Genetics, 2006, 2, e2.	3.5	306
6	Retroelement Distributions in the Human Genome: Variations Associated With Age and Proximity to Genes. Genome Research, 2002, 12, 1483-1495.	5.5	297
7	Complex controls: the role of alternative promoters in mammalian genomes. Trends in Genetics, 2003, 19, 640-648.	6.7	283
8	Isolation of human iPS cells using EOS lentiviral vectors to select for pluripotency. Nature Methods, 2009, 6, 370-376.	19.0	274
9	Endogenous retroviral LTRs as promoters for human genes: A critical assessment. Gene, 2009, 448, 105-114.	2.2	261
10	DNA methylation in ES cells requires the lysine methyltransferase G9a but not its catalytic activity. EMBO Journal, 2008, 27, 2691-2701.	7.8	207
11	Human-Specific Integrations of the HERV-K Endogenous Retrovirus Family. Journal of Virology, 1998, 72, 9782-9787.	3.4	205
12	Endogenous retroviral promoter exaptation in human cancer. Mobile DNA, 2016, 7, 24.	3.6	178
13	Long Terminal Repeats Are Used as Alternative Promoters for the Endothelin B Receptor and Apolipoprotein C-I Genes in Humans. Journal of Biological Chemistry, 2001, 276, 1896-1903.	3.4	176
14	The Ly-49 family: genes, proteins and recognition of class I MHC. Immunological Reviews, 1997, 155, 67-77.	6.0	169
15	Expression of different members of the Ly-49 gene family defines distinct natural killer cell subsets and cell adhesion properties Journal of Experimental Medicine, 1994, 180, 2287-2295.	8.5	164
16	Endogenous retroviruses. Cellular and Molecular Life Sciences, 2008, 65, 3329-3347.	5.4	157
17	Endogenous Human Retroviruses. , 1994, , 465-535.		154
18	Mammalian Endogenous Retroviruses. Microbiology Spectrum, 2015, 3, MDNA3-0009-2014.	3.0	151

#	Article	IF	CITATIONS
19	Identification of a retrovirus-like repetitive element in human DNA Proceedings of the National Academy of Sciences of the United States of America, 1984, 81, 7510-7514.	7.1	148
20	A gene deletion ending within a complex array of repeated sequences 3' to the human beta-globin gene cluster Proceedings of the National Academy of Sciences of the United States of America, 1986, 83, 5194-5198.	7.1	144
21	Transposable elements in the mammalian embryo: pioneers surviving through stealth and service. Genome Biology, 2016, 17, 100.	8.8	138
22	Impact of transposable elements on the evolution of mammalian gene regulation. Cytogenetic and Genome Research, 2005, 110, 342-352.	1.1	134
23	Retrotransposon-Induced Heterochromatin Spreading in the Mouse Revealed by Insertional Polymorphisms. PLoS Genetics, 2011, 7, e1002301.	3.5	129
24	Otoconin-90, the mammalian otoconial matrix protein, contains two domains of homology to secretory phospholipase A2. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 15345-15350.	7.1	128
25	Endogenous Retroviruses Provide the Primary Polyadenylation Signal for Two New Human Genes (HHLA2 and HHLA3). Genomics, 1999, 59, 255-263.	2.9	124
26	Molecular analysis of deletions in the human β-globin gene cluster: Deletion junctions and locations of breakpoints. Genomics, 1990, 6, 226-237.	2.9	114
27	Genomic deletions and precise removal of transposable elements mediated by short identical DNA segments in primates. Genome Research, 2005, 15, 1243-1249.	5.5	110
28	An endogenous retroviral long terminal repeat is the dominant promoter for human β1,3-galactosyltransferase 5 in the colon. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 12841-12846.	7.1	109
29	Human Th1 and Th17 Cells Exhibit Epigenetic Stability at Signature Cytokine and Transcription Factor Loci. Journal of Immunology, 2011, 187, 5615-5626.	0.8	109
30	Heterogeneity Among Ly-49C Natural Killer (NK) Cells: Characterization of Highly Related Receptors with Differing Functions and Expression Patterns. Journal of Experimental Medicine, 1996, 184, 2085-2090.	8.5	108
31	Lysine methyltransferase G9a is required for de novo DNA methylation and the establishment, but not the maintenance, of proviral silencing. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 5718-5723.	7.1	105
32	Prolactin in man: a tale of two promoters. BioEssays, 2006, 28, 1051-1055.	2.5	100
33	Repeated Recruitment of LTR Retrotransposons as Promoters by the Anti-Apoptotic Locus NAIP during Mammalian Evolution. PLoS Genetics, 2007, 3, e10.	3.5	100
34	Recognition of class I major histocompatibility complex molecules by Ly-49: specificities and domain interactions Journal of Experimental Medicine, 1996, 183, 1553-1559.	8.5	99
35	The Opitz Syndrome Gene Mid1 Is Transcribed from a Human Endogenous Retroviral Promoter. Molecular Biology and Evolution, 2002, 19, 1934-1942.	8.9	98
36	A ChineseGl̂³+(Al̂³l̂1²)Othalassemia deletion: comparison to other deletions in the human l̂²-globin gene cluster and sequence analysis of the breakpoints. Nucleic Acids Research, 1985, 13, 6559-6575.	14.5	94

#	Article	IF	CITATIONS
37	HERV-H Endogenous Retroviruses: Presence in the New World Branch but Amplification in the Old World Primate Lineage. Virology, 1995, 213, 395-404.	2.4	94
38	Genome-Wide Assessments Reveal Extremely High Levels of Polymorphism of Two Active Families of Mouse Endogenous Retroviral Elements. PLoS Genetics, 2008, 4, e1000007.	3.5	90
39	Splicing of a human endogenous retrovirus to a novel phospholipase A2 related gene. Nucleic Acids Research, 1993, 21, 135-143.	14.5	88
40	Potential mechanisms of endogenous retroviral-mediated genomic instability in human cancer. Seminars in Cancer Biology, 2010, 20, 246-253.	9.6	88
41	Widely variable endogenous retroviral methylation levels in human placenta. Nucleic Acids Research, 2007, 35, 4743-4754.	14.5	86
42	Transcription of two human genes from a bidirectional endogenous retrovirus promoter. Gene, 2006, 366, 335-342.	2.2	85
43	Recent Evolutionary Expansion of a Subfamily of RTVL-H Human Endogenous Retrovirus-like Elements. Virology, 1993, 196, 778-788.	2.4	84
44	Onco-exaptation of an endogenous retroviral LTR drives IRF5 expression in Hodgkin lymphoma. Oncogene, 2016, 35, 2542-2546.	5.9	81
45	Mouse germ line mutations due to retrotransposon insertions. Mobile DNA, 2019, 10, 15.	3.6	81
46	Early transport changes during erythroid differentiation of friend leukemic cells. Journal of Cellular Physiology, 1978, 94, 275-285.	4.1	80
47	Multiple effects govern endogenous retrovirus survival patterns in human gene introns. Genome Biology, 2006, 7, R86.	9.6	77
48	Distributions of Transposable Elements Reveal Hazardous Zones in Mammalian Introns. PLoS Computational Biology, 2011, 7, e1002046.	3.2	77
49	Localization of five new Ly49 genes, including three closely related to Ly49c. Immunogenetics, 1998, 48, 174-183.	2.4	75
50	MiRNAs, epigenetics, and cancer. Mammalian Genome, 2008, 19, 517-25.	2.2	75
51	Evolution of NK receptors: a single Ly49 and multiple KIR genes in the cow. European Journal of Immunology, 2002, 32, 810.	2.9	72
52	Quantitative colony method for tumorigenic cells transformed by two distinct strains of Friend leukemia virus. Proceedings of the National Academy of Sciences of the United States of America, 1981, 78, 1703-1707.	7.1	70
53	Multiple Groups of Endogenous Betaretroviruses in Mice, Rats, and Other Mammals. Journal of Virology, 2004, 78, 5784-5798.	3.4	70
54	Strategy for detecting cellular transcripts promoted by human endogenous long terminal repeats: Identification of a novel gene (CDC4L) with homology to yeast CDC4. Genomics, 1992, 13, 1237-1246.	2.9	69

#	Article	IF	CITATIONS
55	Sequence Analysis of the Ly49 Cluster in C57BL/6 Mice: A Rapidly Evolving Multigene Family in the Immune System. Genomics, 2002, 80, 646-661.	2.9	68
56	Carbohydrate Recognition by a Natural Killer Cell Receptor, Ly-49C. Journal of Biological Chemistry, 1995, 270, 9691-9694.	3.4	67
57	Ly49 and CD94/NKG2: developmentally regulated expression and evolution. Immunological Reviews, 2001, 181, 90-103.	6.0	64
58	Loss of m1acp3Î [°] Ribosomal RNA Modification Is a Major Feature of Cancer. Cell Reports, 2020, 31, 107611.	6.4	64
59	Intergenic Splicing between a HERV-H Endogenous Retrovirus and Two Adjacent Human Genes. Genomics, 1999, 57, 371-379.	2.9	63
60	Pluripotency and the endogenous retrovirus HERVH: Conflict or serendipity?. BioEssays, 2016, 38, 109-117.	2.5	63
61	Distinct isoform of FABP7 revealed by screening for retroelement-activated genes in diffuse large B-cell lymphoma. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E3534-43.	7.1	62
62	Functional heterogeneity of a large family of human LTR-like promoters and enhancers. Nucleic Acids Research, 1990, 18, 1261-1270.	14.5	61
63	Functional Analysis of the Endogenous Retroviral Promoter of the Human Endothelin B Receptor Gene. Journal of Virology, 2003, 77, 7459-7466.	3.4	58
64	Epigenetic interplay between mouse endogenous retroviruses and host genes. Genome Biology, 2012, 13, R89.	9.6	56
65	A human endogenous long terminal repeat provides a polyadenylation signal to a novel, alternatively spliced transcript in normal placenta. Gene, 1992, 121, 287-294.	2.2	55
66	Repetitive Elements in the 5′ Untranslated Region of a Human Zinc-Finger Gene Modulate Transcription and Translation Efficiency. Genomics, 2001, 76, 110-116.	2.9	55
67	Friend leukaemia virus-transformed cells, unlike normal stem cells, form spleen colonies in Sl/Sld mice. Nature, 1980, 288, 592-594.	27.8	54
68	Investigations of the genomic region that contains theclf1 mutation, a causal gene in multifactorial cleft lip and palate in mice. Birth Defects Research Part A: Clinical and Molecular Teratology, 2005, 73, 103-113.	1.6	54
69	Cloning of murine NKG2A, B and C: second family of C-type lectin receptors on murine NK cells. European Journal of Immunology, 1999, 29, 755-761.	2.9	52
70	Evolution of natural killer cell receptors. Current Biology, 2001, 11, 626-630.	3.9	52
71	Endogenous retrovirus long terminal repeats as ready-to-use mobile promoters: The case of primate β3GAL-T5. Gene, 2005, 364, 2-12.	2.2	50
72	Polyadenylation function and sequence variability of the long terminal repeats of the human endogenous retrovirus-like family RTVL-H. Virology, 1989, 173, 591-599.	2.4	49

#	Article	IF	CITATIONS
73	Novel Mouse Type D Endogenous Proviruses and ETn Elements Share Long Terminal Repeat and Internal Sequences. Journal of Virology, 2000, 74, 7221-7229.	3.4	49
74	Structure and Expression of Mobile ETnII Retroelements and Their Coding-Competent MusD Relatives in the Mouse. Journal of Virology, 2003, 77, 11448-11458.	3.4	49
75	Transcriptional Regulation of Early Transposon Elements, an Active Family of Mouse Long Terminal Repeat Retrotransposons. Journal of Virology, 2005, 79, 13865-13874.	3.4	49
76	Ly49 genes in non-rodent mammals. Immunogenetics, 2003, 55, 109-115.	2.4	48
77	A Novel Protein Isoform of the Multicopy Human NAIP Gene Derives from Intragenic Alu SINE Promoters. PLoS ONE, 2009, 4, e5761.	2.5	47
78	Isolation of a Human Endogenous Retroviral HERV-H Element with an Open env Reading Frame. Virology, 1999, 258, 441-450.	2.4	45
79	H3K9me3-binding proteins are dispensable for SETDB1/H3K9me3-dependent retroviral silencing. Epigenetics and Chromatin, 2011, 4, 12.	3.9	43
80	Placenta-specific Expression of the Interleukin-2 (IL-2) Receptor Î ² Subunit from an Endogenous Retroviral Promoter. Journal of Biological Chemistry, 2011, 286, 35543-35552.	3.4	41
81	The program of friend cell erythroid differentiation: Early changes in Na+/K+ ATPase function. Journal of Supramolecular Structure, 1978, 8, 431-438.	2.3	40
82	C-GATE - catalogue of genes affected by transposable elements. Mobile DNA, 2012, 3, 9.	3.6	40
83	Spliced HERV-H endogenous retroviral sequences in human genomic DNA: Evidence for amplification via retrotransposition. Virology, 1995, 206, 164-173.	2.4	37
84	Evidence for Epigenetic Maintenance of <i>Ly49a</i> Monoallelic Gene Expression. Journal of Immunology, 2006, 176, 2991-2999.	0.8	37
85	Epigenetic mechanism causes Wnt9b deficiency and nonsyndromic cleft lip and palate in the A/WySn mouse strain. Birth Defects Research Part A: Clinical and Molecular Teratology, 2014, 100, 772-788.	1.6	35
86	Insertional polymorphisms of ETn retrotransposons include a disruption of the wiz gene in C57BL/6 mice. Mammalian Genome, 2002, 13, 423-428.	2.2	32
87	The <i>clf2</i> gene has an epigenetic role in the multifactorial etiology of cleft lip and palate in the A/WySn mouse strain. Birth Defects Research Part A: Clinical and Molecular Teratology, 2011, 91, 716-727.	1.6	32
88	Role of Runt-related Transcription Factor 3 (RUNX3) in Transcription Regulation of Natural Cytotoxicity Receptor 1 (NCR1/NKp46), an Activating Natural Killer (NK) Cell Receptor. Journal of Biological Chemistry, 2012, 287, 7324-7334.	3.4	32
89	Clonal analysis of the late stages of erythroleukemia induced by two distinct strains of Friend leukemia virus Molecular and Cellular Biology, 1981, 1, 721-730.	2.3	30
90	Chromosomal distribution of the RTVL-H family of human endogenous retrovirus-like sequences. Genomics, 1988, 2, 280-287.	2.9	29

#	Article	IF	CITATIONS
91	Expression analysis of new Ly49 genes: most transcripts of Ly49j lack the transmembrane domain. Immunogenetics, 1999, 49, 685-691.	2.4	29
92	Integrin-Linked Kinase Mediates Therapeutic Resistance of Quiescent CML Stem Cells to Tyrosine Kinase Inhibitors. Cell Stem Cell, 2020, 27, 110-124.e9.	11.1	29
93	Gain of Sp1 Sites and Loss of Repressor Sequences Associated with a Young, Transcriptionally Active Subset of HERV-H Endogenous Long Terminal Repeats. Virology, 1996, 220, 213-218.	2.4	28
94	Variable DNA methylation of transposable elements: The case study of mouse Early Transposons. Epigenetics, 2010, 5, 68-79.	2.7	28
95	LIONS: analysis suite for detecting and quantifying transposable element initiated transcription from RNA-seq. Bioinformatics, 2019, 35, 3839-3841.	4.1	27
96	A Human Endogenous Retrovirus Suppresses Translation of an Associated Fusion Transcript, PLA2L. Journal of Virology, 1998, 72, 6164-6168.	3.4	27
97	The role of Heme in the regulation of the late program of friend cell erythroid differentiation. Journal of Cellular Physiology, 1979, 100, 467-479.	4.1	26
98	Widely Spaced Alternative Promoters, Conserved between Human and Rodent, Control Expression of the Opitz Syndrome Gene MID1. Genomics, 2002, 80, 499-508.	2.9	25
99	Rapid expansion of the Ly49 gene cluster in rat. Genomics, 2004, 84, 218-221.	2.9	25
100	Comparative analysis of the promoter regions and transcriptional start sites of mouse Ly49 genes. Immunogenetics, 2001, 53, 215-224.	2.4	24
101	Transcriptional Control of Murine <i>CD94</i> Gene: Differential Usage of Dual Promoters by Lymphoid Cell Types. Journal of Immunology, 2003, 171, 4219-4226.	0.8	24
102	Identification of E74-like factor 1 (ELF1) as a transcriptional regulator of the Hox cofactor MEIS1. Experimental Hematology, 2010, 38, 798-808.e2.	0.4	24
103	Transcripts from a Novel Human KRAB Zinc Finger Gene Contain SplicedAluand Endogenous Retroviral Segments. Genomics, 1996, 33, 463-472.	2.9	23
104	Human Endogenous Retroviral Long Terminal Repeat Sequences as Cell Type-Specific Promoters in Retroviral Vectors. Journal of Virology, 2009, 83, 12643-12650.	3.4	22
105	Acquisition of MHC-Specific Receptors on Murine Natural Killer Cells. Critical Reviews in Immunology, 2003, 23, 251-266.	0.5	21
106	Transcription of the human and rodent SPAM1 / PH-20 genes initiates within an ancient endogenous retrovirus. BMC Genomics, 2005, 6, 47.	2.8	20
107	Genomic Structure and Evolution of a Novel Gene (PLA2L) with Duplicated Phospholipase A2-like Domains. Genomics, 1997, 39, 38-46.	2.9	19
108	Functional analysis of 5? and 3? regions of the closely related Ly49c and j genes. Immunogenetics, 2001, 52, 212-223.	2.4	19

#	Article	IF	CITATIONS
109	Stochastic epigenetic silencing of retrotransposons: Does stability come with age?. Gene, 2007, 390, 130-135.	2.2	19
110	Evidence for high bi-allelic expression of activating Ly49 receptors. Nucleic Acids Research, 2009, 37, 5331-5342.	14.5	19
111	On the role of H3.3 in retroviral silencing. Nature, 2017, 548, E1-E3.	27.8	19
112	A novel isoform of IL-33 revealed by screening for transposable element promoted genes in human colorectal cancer. PLoS ONE, 2017, 12, e0180659.	2.5	17
113	Preferential Epigenetic Suppression of the Autonomous MusD over the Nonautonomous ETn Mouse Retrotransposons. Molecular and Cellular Biology, 2009, 29, 2456-2468.	2.3	16
114	Expression of the leukemic prognostic marker CD7 is linked to epigenetic modifications in chronic myeloid leukemia. Molecular Cancer, 2010, 9, 41.	19.2	15
115	Cenistein versus ICI 182, 780: An ally or enemy in metastatic progression of prostate cancer. Prostate, 2013, 73, 1747-1760.	2.3	15
116	Growth in high-K+ medium induces friend cell differentiation. Developmental Biology, 1979, 70, 268-273.	2.0	14
117	SV40 large T antigen trans-activates the long terminal repeats of a large family of human endogenous retrovirus-like sequences. Virology, 1992, 187, 242-250.	2.4	14
118	A Role for DNA Hypomethylation and Histone Acetylation in Maintaining Allele-Specific Expression of Mouse NKG2A in Developing and Mature NK Cells. Journal of Immunology, 2006, 177, 414-421.	0.8	14
119	Creation of the two isoforms of rodent NKG2D was driven by a B1 retrotransposon insertion. Nucleic Acids Research, 2009, 37, 3032-3043.	14.5	13
120	Induction of clonogenic and erythroleukemic cells by different helper virus pseudotypes of Friend spleen focus-forming virus. Virology, 1985, 141, 337-341.	2.4	11
121	Plasticity of Ly49g expression is due to epigenetics. Molecular Immunology, 2007, 44, 821-826.	2.2	11
122	Phorbol ester tumor promoters block the transition from the early to the heme-dependent late program of friend cell differentiation. Journal of Cellular Physiology, 1980, 105, 519-526.	4.1	10
123	Human endogenous retroviruses and pathogenicity: genomic considerations. Trends in Microbiology, 1999, 7, 431.	7.7	10
124	Gene Properties and Chromatin State Influence the Accumulation of Transposable Elements in Genes. PLoS ONE, 2012, 7, e30158.	2.5	10
125	Mammalian Endogenous Retroviruses. , 2015, , 1079-1100.		10
126	Endogenous Retrovirus Transcript Levels Are Associated with Immunogenic Signatures in Multiple Metastatic Cancer Types. Molecular Cancer Therapeutics, 2020, 19, 1889-1897.	4.1	10

#	Article	IF	CITATIONS
127	Inter-Strain Epigenomic Profiling Reveals a Candidate IAP Master Copy in C3H Mice. Viruses, 2020, 12, 783.	3.3	9
128	Widely spaced alternative promoters, conserved between human and rodent, control expression of the Opitz syndrome gene MID1. Genomics, 2002, 80, 499-508.	2.9	9
129	Identification of a new murine lectin-like gene in close proximity to CD94. Immunogenetics, 2003, 55, 53-56.	2.4	8
130	The genomic organization of the mouse CD94 C-type lectin gene. International Journal of Immunogenetics, 2000, 27, 149-151.	1.2	7
131	Epigenetic modifier drugs trigger widespread transcription of endogenous retroviruses. Nature Genetics, 2017, 49, 974-975.	21.4	7
132	Visualized Computational Predictions of Transcriptional Effects by Intronic Endogenous Retroviruses. PLoS ONE, 2013, 8, e71971.	2.5	7
133	Transposable elements: not as quiet as a mouse. Genome Biology, 2012, 13, 159.	9.6	6
134	Cloning of murine NKG2A, B and C: second family of C-type lectin receptors on murine NK cells. European Journal of Immunology, 1999, 29, 755-761.	2.9	6
135	Colchicine resistant friend cells: Application to the study of actinomycin D induced erythroid differentiation. Journal of Cellular Physiology, 1980, 102, 63-70.	4.1	5
136	A human gene related to the ribosomal protein L23 gene ofHalobacterium marismortui. Nucleic Acids Research, 1990, 18, 5301-5301.	14.5	5
137	Expression of murine killer immunoglobulin-like receptor KIRL1 on CD1d-independent NK1.1+ T cells. Immunogenetics, 2007, 59, 641-651.	2.4	5
138	Meis1 disrupts the genomic imprint of Dlk1 in a NUP98-HOXD13 leukemia model. Leukemia, 2010, 24, 1788-1791.	7.2	4
139	Widely Spaced Alternative Promoters, Conserved between Human and Rodent, Control Expression of the Opitz Syndrome Gene. Genomics, 2002, 80, 499-508.	2.9	4
140	Induction of endogenous retroelements as a potential mechanism for mouse-specific drug-induced carcinogenicity. PLoS ONE, 2017, 12, e0176768.	2.5	3
141	Reality check for transposon enhancers. ELife, 2019, 8, .	6.0	3
142	Methylated DNA Immunoprecipitation Analysis of Mammalian Endogenous Retroviruses. Methods in Molecular Biology, 2016, 1400, 377-385.	0.9	2