List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5245687/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Precise and Ultrafast Molecular Sieving Through Graphene Oxide Membranes. Science, 2014, 343, 752-754.	12.6	2,060
2	Proton transport through one-atom-thick crystals. Nature, 2014, 516, 227-230.	27.8	668
3	Square ice in graphene nanocapillaries. Nature, 2015, 519, 443-445.	27.8	602
4	Ultrathin graphene-based membrane with preciseÂmolecular sieving and ultrafast solventÂpermeation. Nature Materials, 2017, 16, 1198-1202.	27.5	549
5	Molecular transport through capillaries made with atomic-scale precision. Nature, 2016, 538, 222-225.	27.8	483
6	Size effect in ion transport through angstrom-scale slits. Science, 2017, 358, 511-513.	12.6	418
7	Super-elastic and fatigue resistant carbon material with lamellar multi-arch microstructure. Nature Communications, 2016, 7, 12920.	12.8	344
8	Limits on gas impermeability of graphene. Nature, 2020, 579, 229-232.	27.8	220
9	Size effect on the coalescence-induced self-propelled droplet. Applied Physics Letters, 2011, 98, .	3.3	210
10	Complete steric exclusion of ions and proton transport through confined monolayer water. Science, 2019, 363, 145-148.	12.6	207
11	Hydrophilicity gradient in covalent organic frameworks for membrane distillation. Nature Materials, 2021, 20, 1551-1558.	27.5	195
12	Nanowire Templated Semihollow Bicontinuous Graphene Scrolls: Designed Construction, Mechanism, and Enhanced Energy Storage Performance. Journal of the American Chemical Society, 2013, 135, 18176-18182.	13.7	187
13	Capillary condensation under atomic-scale confinement. Nature, 2020, 588, 250-253.	27.8	168
14	Self-adaptive strain-relaxation optimization for high-energy lithium storage material through crumpling of graphene. Nature Communications, 2014, 5, 4565.	12.8	139
15	Ballistic molecular transport through two-dimensional channels. Nature, 2018, 558, 420-424.	27.8	139
16	Multiscale transport mechanism of shale gas in micro/nano-pores. International Journal of Heat and Mass Transfer, 2017, 111, 1172-1180.	4.8	123
17	Grapheneâ€Piezoelectric Material Heterostructure for Harvesting Energy from Water Flow. Advanced Functional Materials, 2017, 27, 1604226.	14.9	121
18	Efficient GeV ion generation by ultraintense circularly polarized laser pulse. Physics of Plasmas, 2007, 14	1.9	118

#	Article	IF	CITATIONS
19	Pinning and depinning mechanism of the contact line during evaporation of nano-droplets sessile on textured surfaces. Soft Matter, 2013, 9, 5703.	2.7	116
20	Transport of Shale Gas in Microporous/Nanoporous Media: Molecular to Pore-Scale Simulations. Energy & Fuels, 2021, 35, 911-943.	5.1	101
21	Multistaged acceleration of ions by circularly polarized laser pulse: Monoenergetic ion beam generation. Physics of Plasmas, 2007, 14, .	1.9	95
22	Compression Limit of Two-Dimensional Water Constrained in Graphene Nanocapillaries. ACS Nano, 2015, 9, 12197-12204.	14.6	92
23	Slip boundary conditions based on molecular kinetic theory: The critical shear stress and the energy dissipation at the liquid–solid interface. Soft Matter, 2011, 7, 8628.	2.7	90
24	Quasi-Two-Dimensional SiC and SiC ₂ : Interaction of Silicon and Carbon at Atomic Thin Lattice Plane. Journal of Physical Chemistry C, 2015, 119, 19772-19779.	3.1	87
25	A comparative study of Young's modulus of single-walled carbon nanotube by CPMD, MD and first principle simulations. Computational Materials Science, 2009, 46, 621-625.	3.0	84
26	Interfacial strengthening and self-healing effect in graphene-copper nanolayered composites under shear deformation. Carbon, 2016, 107, 680-688.	10.3	83
27	Hand-Held Femtogram Detection of Hazardous Picric Acid with Hydrophobic Ag Nanopillar SERS Substrates and Mechanism of Elasto-Capillarity. ACS Sensors, 2017, 2, 198-202.	7.8	81
28	Enhanced oil droplet detachment from solid surfaces in charged nanoparticle suspensions. Soft Matter, 2013, 9, 7974.	2.7	66
29	How to identify dislocations in molecular dynamics simulations?. Science China: Physics, Mechanics and Astronomy, 2014, 57, 2177-2187.	5.1	66
30	Strengthening metal nanolaminates under shock compression through dual effect of strong and weak graphene interface. Applied Physics Letters, 2014, 104, .	3.3	65
31	The head-on colliding process of binary liquid droplets at low velocity: High-speed photography experiments and modeling. Journal of Colloid and Interface Science, 2008, 326, 196-200.	9.4	61
32	Microscopic Origin of Capillary Force Balance at Contact Line. Physical Review Letters, 2020, 124, 125502.	7.8	58
33	Contact angle hysteresis at the nanoscale: a molecular dynamics simulation study. Colloid and Polymer Science, 2013, 291, 307-315.	2.1	55
34	Novel Polygonal Vanadium Oxide Nanoscrolls as Stable Cathode for Lithium Storage. Advanced Functional Materials, 2015, 25, 1773-1779.	14.9	54
35	Two-Phase Transport Characteristic of Shale Gas and Water through Hydrophilic and Hydrophobic Nanopores. Energy & Fuels, 2020, 34, 4407-4420.	5.1	54
36	Molecular origin of contact line stick-slip motion during droplet evaporation. Scientific Reports, 2015, 5, 17521.	3.3	53

#	Article	IF	CITATIONS
37	Mechanical properties of copper octet-truss nanolattices. Journal of the Mechanics and Physics of Solids, 2017, 101, 133-149.	4.8	52
38	Graphene Thin Films by Noncovalent-Interaction-Driven Assembly of Graphene Monolayers for Flexible Supercapacitors. CheM, 2018, 4, 896-910.	11.7	48
39	Ultrafast rectifying counter-directional transport of proton and metal ions in metal-organic framework–based nanochannels. Science Advances, 2022, 8, eabl5070.	10.3	48
40	Molecular mechanism of adsorption/desorption hysteresis: dynamics of shale gas in nanopores. Science China: Physics, Mechanics and Astronomy, 2017, 60, 1.	5.1	46
41	Roughness Factor-Dependent Transport Characteristic of Shale Gas through Amorphous Kerogen Nanopores. Journal of Physical Chemistry C, 2020, 124, 12752-12765.	3.1	45
42	Tap dance of a water droplet. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2012, 468, 2485-2495.	2.1	41
43	Dehydration impeding ionic conductance through two-dimensional angstrom-scale slits. Nanoscale, 2019, 11, 8449-8457.	5.6	40
44	Nanoconfined Transport Characteristic of Methane in Organic Shale Nanopores: The Applicability of the Continuous Model. Energy & amp; Fuels, 2020, 34, 9552-9562.	5.1	39
45	Evaporation-driven liquid flow through nanochannels. Physics of Fluids, 2020, 32, .	4.0	38
46	Super-elasticity and deformation mechanism of three-dimensional pillared graphene network structures. Carbon, 2017, 118, 588-596.	10.3	36
47	Nanoparticle-tuned spreading behavior of nanofluid droplets on the solid substrate. Microfluidics and Nanofluidics, 2015, 18, 111-120.	2.2	33
48	Channel-width dependent pressure-driven flow characteristics of shale gas in nanopores. AIP Advances, 2017, 7, .	1.3	33
49	Electrowetting on a lotus leaf. Biomicrofluidics, 2009, 3, 22406.	2.4	29
50	Charge Asymmetry Effect in Ion Transport through Angstrom-Scale Channels. Journal of Physical Chemistry C, 2019, 123, 1462-1469.	3.1	29
51	Exponentially selective molecular sieving through angstrom pores. Nature Communications, 2021, 12, 7170.	12.8	29
52	Shuttle Suppression by Polymer-Sealed Graphene-Coated Polypropylene Separator. ACS Applied Materials & amp; Interfaces, 2018, 10, 5534-5542.	8.0	27
53	Ultrahigh energy proton generation in sequential radiation pressure and bubble regime. Physics of Plasmas, 2010, 17, .	1.9	25
54	Negative differential resistance behavior of silicon monatomic chain encapsulated in carbon nanotubes. Computational Materials Science, 2012, 62, 87-92.	3.0	25

#	Article	IF	CITATIONS
55	Defecting controllability of bombarding graphene with different energetic atoms via reactive force field model. Journal of Applied Physics, 2013, 114, 054313.	2.5	25
56	Formation of Trilayer Ices in Graphene Nanocapillaries under High Lateral Pressure. Journal of Physical Chemistry C, 2016, 120, 8109-8115.	3.1	25
57	Anisotropic growth of buckling-driven wrinkles in graphene monolayer. Nanotechnology, 2015, 26, 065701.	2.6	23
58	Effect of a Single Nanoparticle on the Contact Line Motion. Langmuir, 2016, 32, 12676-12685.	3.5	23
59	Ion acceleration with mixed solid targets interacting with circularly polarized lasers. Physical Review Special Topics: Accelerators and Beams, 2009, 12, .	1.8	21
60	The unique properties of the solid-like confined liquid films: A large scale molecular dynamics simulation approach. Acta Mechanica Solida Sinica, 2011, 24, 101-116.	1.9	21
61	AB-stacked square-like bilayer ice in graphene nanocapillaries. Physical Chemistry Chemical Physics, 2016, 18, 22039-22046.	2.8	20
62	Direct Current Electricity Generation from Dynamic Polarized Water–Semiconductor Interface. Journal of Physical Chemistry C, 2021, 125, 14180-14187.	3.1	20
63	Superheating of monolayer ice in graphene nanocapillaries. Journal of Chemical Physics, 2017, 146, 134703.	3.0	19
64	High-energy monoenergetic proton bunch from laser interaction with a complex target. Physics of Plasmas, 2009, 16, .	1.9	18
65	Structural evolution of the silicon nanowire via molecular dynamics simulations: the double-strand atomic chain and the monatomic chain. Archive of Applied Mechanics, 2015, 85, 323-329.	2.2	18
66	Superstrong Noncovalent Interface between Melamine and Graphene Oxide. ACS Applied Materials & Interfaces, 2019, 11, 17068-17078.	8.0	18
67	Surface morphological effects on gas transport through nanochannels with atomically smooth walls. Carbon, 2021, 180, 85-91.	10.3	18
68	Robust Underwater Air Layer Retention and Restoration on <i>Salvinia</i> -Inspired Self-Grown Heterogeneous Architectures. ACS Nano, 2022, 16, 2730-2740.	14.6	18
69	Anomalous twisting strength of tilt grain boundaries in armchair graphene nanoribbons. Physical Chemistry Chemical Physics, 2015, 17, 31911-31916.	2.8	17
70	Efficient transport of droplet sandwiched between saw-tooth plates. Journal of Colloid and Interface Science, 2016, 462, 280-287.	9.4	17
71	Structural and dynamic characteristics in monolayer square ice. Journal of Chemical Physics, 2017, 147, 044706.	3.0	17
72	Design of Nano Screw Pump for Water Transport and its Mechanisms. Scientific Reports, 2017, 7, 41717.	3.3	16

#	Article	IF	CITATIONS
73	Anisotropic propagation and upper frequency limitation of terahertz waves in graphene. Applied Physics Letters, 2013, 103, .	3.3	15
74	Stagnation of a droplet on a conical substrate determined by the critical curvature ratio. Journal Physics D: Applied Physics, 2016, 49, 085304.	2.8	15
75	Generation of plasma intrinsic oscillation at the front surface of a target irradiated by a circularly polarized laser pulse. Physics of Plasmas, 2009, 16, .	1.9	14
76	Understanding formation mechanism of ZnO diatomic chain and multi-shell structure using physical mechanics: Molecular dynamics and first-principle simulations?. Science China: Physics, Mechanics and Astronomy, 2012, 55, 1138-1146.	5.1	14
77	Anomalously low friction of confined monolayer water with a quadrilateral structure. Journal of Chemical Physics, 2021, 154, 224508.	3.0	14
78	Competitive adsorption of asphaltene and n-heptane on quartz surfaces and its effect on crude oil transport through nanopores. Journal of Molecular Liquids, 2022, 359, 119312.	4.9	14
79	Wang et al. reply. Nature, 2015, 528, E3-E3.	27.8	13
80	Enhanced Gas Recovery in Kerogen Pyrolytic Pore Network: Molecular Simulations and Theoretical Analysis. Energy & Fuels, 2021, 35, 2253-2267.	5.1	12
81	A generalized examination of capillary force balance at contact line: On rough surfaces or in two-liquid systems. Journal of Colloid and Interface Science, 2021, 585, 320-327.	9.4	12
82	Molecular kinetic theory of boundary slip on textured surfaces by molecular dynamics simulations. Science China: Physics, Mechanics and Astronomy, 2014, 57, 2152-2160.	5.1	11
83	Anomalous ion transport through angstrom-scale pores: Effect of hydration shell exchange on ion mobility. Applied Surface Science, 2021, 560, 150022.	6.1	11
84	Buckling failure of square ice-nanotube arrays constrained in graphene nanocapillaries. Journal of Chemical Physics, 2016, 145, 054704.	3.0	10
85	Electron acceleration by a propagating laser pulse in vacuum. Physics of Plasmas, 2007, 14, 083102.	1.9	8
86	Effects of pulse duration and areal density on ultrathin foil acceleration. Physics of Plasmas, 2010, 17,	1.9	8
87	Molecular dynamics studies on spreading of nanofluids promoted by nanoparticle adsorption on solid surface. Theoretical and Applied Mechanics Letters, 2013, 3, 054006.	2.8	8
88	Molecular transport under extreme confinement. Science China: Physics, Mechanics and Astronomy, 2022, 65, 1.	5.1	8
89	Angular distribution of emitted electrons due to intense p-polarized laser foil interaction. Physics of Plasmas, 2010, 17, 033101.	1.9	7
90	Structure and transport of confined liquid in nanochannels. Scientia Sinica: Physica, Mechanica Et Astronomica, 2018, 48, 094609.	0.4	7

#	Article	IF	CITATIONS
91	Transformation between divacancy defects induced by an energy pulse in graphene. Nanotechnology, 2016, 27, 274004.	2.6	6
92	Theoretical analysis of high strength and anti-buckling of three-dimensional carbon honeycombs under shear loading. Composites Part B: Engineering, 2021, 219, 108967.	12.0	6
93	Water desalination using nano screw pumps with a considerable processing rate. RSC Advances, 2017, 7, 20360-20368.	3.6	5
94	Effect of grain boundaries on mechanical transverse wave propagations in graphene. Journal of Applied Physics, 2017, 121, .	2.5	4
95	Solid Lipid Nanoparticles - SLN. , 2012, , 2471-2487.		3
96	Molecular Dynamics Simulation and Molecular Orbital Method. , 2011, , 1349-1384.		1
97	Experimental and Theoretical Study of Binary Droplet Head-On Collisions in MEMS. , 2008, , .		0
98	The Diagnostics of Density Distribution for Dense Hot DT Plasmas Using Fast Protons. The Review of Laser Engineering, 2008, 36, 1150-1152.	0.0	0
99	Solar Cells. , 2012, , 2459-2459.		0
100	siRNA Delivery. , 2012, , 2429-2429.		0
101	Small-Angle Scattering. , 2012, , 2437-2437.		0
102	Silver (Ag). , 2012, , 2420-2420.		0
103	Synthesis of Subnanometric Metal Nanoparticles. , 2012, , 2639-2648.		0
104	Surface Plasmon Enhanced Optical Bistability and Optical Switching. , 2012, , 2583-2591.		0
105	Smart Carbon Nanotube-Polymer Composites. , 2012, , 2451-2451.		0
106	Energy Storage: Novel Polygonal Vanadium Oxide Nanoscrolls as Stable Cathode for Lithium Storage (Adv. Funct. Mater. 12/2015). Advanced Functional Materials, 2015, 25, 1766-1766.	14.9	0
107	Molecular Dynamics Simulation and Molecular Orbital Method. , 2018, , 1-38.		0
108	Molecular Dynamics Simulation and Molecular Orbital Method. , 2018, , 1559-1595.		0

#	Article	IF	CITATIONS
109	Surface Tension Effects of Nanostructures. , 2016, , 3976-3989.		0