
Takaki Miyata

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5244507/publications.pdf Version: 2024-02-01

Τλκλκι Μινλτλ

#	Article	IF	CITATIONS
1	Embryonic Pericytes Promote Microglial Homeostasis and Their Effects on Neural Progenitors in the Developing Cerebral Cortex. Journal of Neuroscience, 2022, 42, 362-376.	3.6	9
2	Developmentally interdependent stretcherâ€compressor relationship between the embryonic brain and the surrounding scalp in the preosteogenic head. Developmental Dynamics, 2022, , .	1.8	3
3	Actin-binding protein filamin-A drives tau aggregation and contributes to progressive supranuclear palsy pathology. Science Advances, 2022, 8, .	10.3	15
4	Mid1 is associated with androgen-dependent axonal vulnerability of motor neurons in spinal and bulbar muscular atrophy. Cell Death and Disease, 2022, 13, .	6.3	2
5	A mouse model of microglia-specific ablation in the embryonic central nervous system. Neuroscience Research, 2021, 173, 54-61.	1.9	1
6	Comparison of the Mechanical Properties Between the Convex and Concave Inner/Apical Surfaces of the Developing Cerebrum. Frontiers in Cell and Developmental Biology, 2021, 9, 702068.	3.7	7
7	Twoâ€photon microscopic observation of cellâ€production dynamics in the developing mammalian neocortex in utero. Development Growth and Differentiation, 2020, 62, 118-128.	1.5	7
8	Transient microglial absence assists postmigratory cortical neurons in proper differentiation. Nature Communications, 2020, 11, 1631.	12.8	35
9	Meflin-Positive Cancer-Associated Fibroblasts Inhibit Pancreatic Carcinogenesis. Cancer Research, 2019, 79, 5367-5381.	0.9	194
10	Roles of the Mesenchymal Stromal/Stem Cell Marker Meflin in Cardiac Tissue Repair and the Development of Diastolic Dysfunction. Circulation Research, 2019, 125, 414-430.	4.5	47
11	Lzts1 controls both neuronal delamination and outer radial glial-like cell generation during mammalian cerebral development. Nature Communications, 2019, 10, 2780.	12.8	27
12	Dorsal-to-Ventral Cortical Expansion Is Physically Primed by Ventral Streaming of Early Embryonic Preplate Neurons. Cell Reports, 2019, 29, 1555-1567.e5.	6.4	17
13	Synaptic transmission from subplate neurons controls radial migration of neocortical neurons. Science, 2018, 360, 313-317.	12.6	127
14	Radial Glial Fibers Promote Neuronal Migration and Functional Recovery after Neonatal Brain Injury. Cell Stem Cell, 2018, 22, 128-137.e9.	11.1	63
15	Neural Progenitor Cells Undergoing Yap/Tead-Mediated Enhanced Self-Renewal Form Heterotopias More Easily in the Diencephalon than in the Telencephalon. Neurochemical Research, 2018, 43, 180-189.	3.3	17
16	Differentiating cells mechanically limit progenitor cells' interkinetic nuclear migration to secure apical cytogenesis. Development (Cambridge), 2018, 145, .	2.5	14
17	Role of extrinsic mechanical force in the development of the RA-I tactile mechanoreceptor. Scientific Reports, 2018, 8, 11085.	3.3	0
18	Microglia extensively survey the developing cortex via the CXCL12/CXCR4 system to help neural progenitors to acquire differentiated properties. Genes To Cells, 2018, 23, 915-922.	1.2	27

Τακακι Μιγατα

#	Article	IF	CITATIONS
19	Elasticity-based boosting of neuroepithelial nucleokinesis via indirect energy transfer from mother to daughter. PLoS Biology, 2018, 16, e2004426.	5.6	21
20	Embryonic Neocortical Microglia Express Toll-Like Receptor 9 and Respond to Plasmid DNA Injected into the Ventricle: Technical Considerations Regarding Microglial Distribution in Electroporated Brain Walls. ENeuro, 2018, 5, ENEURO.0312-18.2018.	1.9	6
21	Sustained inflammation after pericyte depletion induces irreversible blood-retina barrier breakdown. JCI Insight, 2017, 2, e90905.	5.0	113
22	Differences in the Mechanical Properties of the Developing Cerebral Cortical Proliferative Zone between Mice and Ferrets at both the Tissue and Single-Cell Levels. Frontiers in Cell and Developmental Biology, 2016, 4, 139.	3.7	28
23	Cell-cycle-independent transitions in temporal identity of mammalian neural progenitor cells. Nature Communications, 2016, 7, 11349.	12.8	78
24	Synergistic action of nectins and cadherins generates the mosaic cellular pattern of the olfactory epithelium. Journal of Cell Biology, 2016, 212, 561-575.	5.2	42
25	Consensus Paper: Cerebellar Development. Cerebellum, 2016, 15, 789-828.	2.5	337
26	Ferret–mouse differences in interkinetic nuclear migration and cellular densification in the neocortical ventricular zone. Neuroscience Research, 2014, 86, 88-95.	1.9	24
27	N eurogenin2â€d4 V enus and G add45gâ€d4 V enus transgenic mice: Visualizing mitotic and migratory behaviors of cells committed to the neuronal lineage in the developing mammalian brain. Development Growth and Differentiation, 2014, 56, 293-304.	1.5	12
28	Dynamics of Centrosome Translocation and Microtubule Organization in Neocortical Neurons during Distinct Modes of Polarization. Cerebral Cortex, 2014, 24, 1301-1310.	2.9	86
29	Pioneering Axons Regulate Neuronal Polarization in the Developing Cerebral Cortex. Neuron, 2014, 81, 814-829.	8.1	139
30	Interkinetic nuclear migration generates and opposes ventricular-zone crowding: insight into tissue mechanics. Frontiers in Cellular Neuroscience, 2014, 8, 473.	3.7	64
31	TAG-1–assisted progenitor elongation streamlines nuclear migration to optimize subapical crowding. Nature Neuroscience, 2013, 16, 1556-1566.	14.8	93
32	Improved Orange and Red Ca ²⁺ Indicators and Photophysical Considerations for Optogenetic Applications. ACS Chemical Neuroscience, 2013, 4, 963-972.	3.5	218
33	A "multicellular―step to understand the development of the nervous system. Development Growth and Differentiation, 2012, 54, 265-265.	1.5	0
34	Mechanisms that regulate the number of neurons during mouse neocortical development. Current Opinion in Neurobiology, 2010, 20, 22-28.	4.2	70
35	Migration, early axonogenesis, and Reelin-dependent layer-forming behavior of early/posterior-born Purkinje cells in the developing mouse lateral cerebellum. Neural Development, 2010, 5, 23.	2.4	98
36	Ablation of cholesterol biosynthesis in neural stem cells increases their VEGF expression and angiogenesis but causes neuron apoptosis. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 8350-8355.	7.1	64

Τακακι Μιγατα

#	Article	IF	CITATIONS
37	Downregulation of Functional Reelin Receptors in Projection Neurons Implies That Primary Reelin Action Occurs atEarly/Premigratory Stages. Journal of Neuroscience, 2009, 29, 10653-10662.	3.6	65
38	Periventricular notch activation and asymmetric Ngn2 and Tbr2 expression in pair-generated neocortical daughter cells. Molecular and Cellular Neurosciences, 2009, 40, 225-233.	2.2	92
39	Rac is involved in the interkinetic nuclear migration of cortical progenitor cells. Neuroscience Research, 2009, 63, 294-301.	1.9	31
40	Development of threeâ€dimensional architecture of the neuroepithelium: Role of pseudostratification and cellular †̃community'. Development Growth and Differentiation, 2008, 50, S105-12.	1.5	44
41	Neuroepithelial progenitors undergo LGN-dependent planar divisions to maintain self-renewability during mammalian neurogenesis. Nature Cell Biology, 2008, 10, 93-101.	10.3	449
42	Mind Bomb 1-Expressing Intermediate Progenitors Generate Notch Signaling to Maintain Radial Glial Cells. Neuron, 2008, 58, 519-531.	8.1	175
43	Visualizing Spatiotemporal Dynamics of Multicellular Cell-Cycle Progression. Cell, 2008, 132, 487-498.	28.9	1,888
44	Cell-cycle-specific nestin expression coordinates with morphological changes in embryonic cortical neural progenitors. Journal of Cell Science, 2008, 121, 1204-1212.	2.0	65
45	Morphology and Mechanics of Daughter Cells "Delaminating" from the Ventricular Zone of the Developing Neocortex. Cell Adhesion and Migration, 2007, 1, 99-101.	2.7	1
46	Transformation of pin-like ventricular zone cells into cortical neurons. Neuroscience Research, 2007, 57, 326-329.	1.9	21
47	Survey of the morphogenetic dynamics of the ventricular surface of the developing mouse neocortex. Developmental Dynamics, 2007, 236, 3061-3070.	1.8	20
48	Pax6 transcription factor is required for the interkinetic nuclear movement of neuroepithelial cells. Genes To Cells, 2007, 12, 983-996.	1.2	46
49	Twisting of Neocortical Progenitor Cells Underlies a Spring-like Mechanism for Daughter-Cell Migration. Current Biology, 2007, 17, 146-151.	3.9	39
50	Asymmetric Cell Division During Brain Morphogenesis. Progress in Molecular and Subcellular Biology, 2007, 45, 121-142.	1.6	15
51	Dynamic behavior of individual cells in developing organotypic brain slices revealed by the photoconvertable protein Kaede. Experimental Neurology, 2006, 200, 430-437.	4.1	19
52	Inactivation of aPKCλ results in the loss of adherens junctions in neuroepithelial cells without affecting neurogenesis in mouse neocortex. Development (Cambridge), 2006, 133, 1735-1744.	2.5	160
53	Asymmetric production of surface-dividing and non-surface-dividing cortical progenitor cells. Development (Cambridge), 2004, 131, 3133-3145.	2.5	659
54	Differential expression of Pax6 and Ngn2 between pair-generated cortical neurons. Journal of Neuroscience Research, 2004, 78, 784-795.	2.9	30

Τακακι Μιγατα

#	Article	IF	CITATIONS
55	Morphological asymmetry in dividing retinal progenitor cells. Development Growth and Differentiation, 2003, 45, 219-229.	1.5	42
56	Visualization of cell cycling by an improvement in slice culture methods. Journal of Neuroscience Research, 2002, 69, 861-868.	2.9	29
57	Nestin-EGFP Transgenic Mice: Visualization of the Self-Renewal and Multipotency of CNS Stem Cells. Molecular and Cellular Neurosciences, 2001, 17, 259-273.	2.2	298
58	Asymmetric Inheritance of Radial Glial Fibers by Cortical Neurons. Neuron, 2001, 31, 727-741.	8.1	813
59	Regulation of Purkinje Cell Alignment by Reelin as Revealed with CR-50 Antibody. Journal of Neuroscience, 1997, 17, 3599-3609.	3.6	166
60	Distribution of a reeler gene-related antigen in the developing cerebellum: An immunohistochemical study with an allogeneic antibody CR-50 on normal and reeler mice. , 1996, 372, 215-228.		97
61	The reeler gene-associated antigen on cajal-retzius neurons is a crucial molecule for laminar organization of cortical neurons. Neuron, 1995, 14, 899-912.	8.1	844
62	Developmental Potentials of Early Telencephalic Neuroepithelial Cells: A Study with Microexplant Culture. (neurogenesis/commitment/neuroepithelium/telencephalon/culture). Development Growth and Differentiation, 1994, 36, 319-331.	1.5	15
63	Dorsal-to-Ventral Neocortical Expansion is Physically Primed by Ventral Streaming of Early Embryonic Preplate Neurons. SSRN Electronic Journal, 0, , .	0.4	0