List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5244205/publications.pdf Version: 2024-02-01

LIN LIANC

#	Article	IF	CITATIONS
1	Regulation of the Hedgehog and Wingless signalling pathways by the F-box/WD40-repeat protein Slimb. Nature, 1998, 391, 493-496.	27.8	1,610
2	Hedgehog Signaling in Development and Cancer. Developmental Cell, 2008, 15, 801-812.	7.0	986
3	The TEAD/TEF Family of Transcription Factor Scalloped Mediates Hippo Signaling in Organ Size Control. Developmental Cell, 2008, 14, 377-387.	7.0	547
4	Mammalian Mst1 and Mst2 kinases play essential roles in organ size control and tumor suppression. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 1431-1436.	7.1	481
5	Tissue Damage-Induced Intestinal Stem Cell Division in Drosophila. Cell Stem Cell, 2009, 4, 49-61.	11.1	454
6	The Drosophila Ste20 family kinase dMST functions as a tumor suppressor by restricting cell proliferation and promoting apoptosis. Genes and Development, 2003, 17, 2514-2519.	5.9	347
7	Protein kinase A and hedgehog signaling in drosophila limb development. Cell, 1995, 80, 563-572.	28.9	324
8	Hedgehog signalling activity of Smoothened requires phosphorylation by protein kinase A and casein kinase I. Nature, 2004, 432, 1045-1050.	27.8	300
9	Shaggy/GSK3 antagonizes Hedgehog signalling by regulating Cubitus interruptus. Nature, 2002, 416, 548-552.	27.8	283
10	Hippo signaling regulates <i>Drosophila</i> intestine stem cell proliferation through multiple pathways. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 21064-21069.	7.1	283
11	Small-molecule inhibitors reveal multiple strategies for Hedgehog pathway blockade. Proceedings of the United States of America, 2009, 106, 14132-14137.	7.1	274
12	Hedgehog regulates smoothened activity by inducing a conformational switch. Nature, 2007, 450, 252-258.	27.8	244
13	A Hedgehog-Induced BTB Protein Modulates Hedgehog Signaling by Degrading Ci/Gli Transcription Factor. Developmental Cell, 2006, 10, 719-729.	7.0	205
14	Sonic Hedgehog Dependent Phosphorylation by CK1α and GRK2 Is Required for Ciliary Accumulation and Activation of Smoothened. PLoS Biology, 2011, 9, e1001083.	5.6	176
15	Complementary and Mutually Exclusive Activities of Decapentaplegic and Wingless Organize Axial Patterning during Drosophila Leg Development. Cell, 1996, 86, 401-409.	28.9	175
16	Hedgehog-Regulated Costal2-Kinase Complexes Control Phosphorylation and Proteolytic Processing of Cubitus Interruptus. Developmental Cell, 2005, 8, 267-278.	7.0	169
17	Interactions with Costal2 and Suppressor of fused regulate nuclear translocation and activity of Cubitus interruptus. Genes and Development, 2000, 14, 2893-2905.	5.9	159
18	Smoothened transduces Hedgehog signal by physically interacting with Costal2/Fused complex through its C-terminal tail. Genes and Development, 2003, 17, 2709-2720.	5.9	159

#	Article	IF	CITATIONS
19	Hippo signaling regulates Yorkie nuclear localization and activity through 14-3-3 dependent and independent mechanisms. Developmental Biology, 2010, 337, 303-312.	2.0	156
20	Phosphorylation by Double-Time/CKIε and CKIα Targets Cubitus Interruptus for Slimb/β-TRCP-Mediated Proteolytic Processing. Developmental Cell, 2005, 9, 819-830.	7.0	132
21	Hedgehog-Regulated Ubiquitination Controls Smoothened Trafficking and Cell Surface Expression in Drosophila. PLoS Biology, 2012, 10, e1001239.	5.6	129
22	Multiple Ser/Thr-rich degrons mediate the degradation of Ci/Gli by the Cul3-HIB/SPOP E3 ubiquitin ligase. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 21191-21196.	7.1	127
23	Decoding the phosphorylation code in Hedgehog signal transduction. Cell Research, 2013, 23, 186-200.	12.0	119
24	Regulation of Hh/Gli Signaling by Dual Ubiquitin Pathways. Cell Cycle, 2006, 5, 2457-2463.	2.6	117
25	The Conserved Misshapen-Warts-Yorkie Pathway Acts in Enteroblasts to Regulate Intestinal Stem Cells in Drosophila. Developmental Cell, 2014, 31, 291-304.	7.0	112
26	Intestinal stem cell response to injury: lessons from Drosophila. Cellular and Molecular Life Sciences, 2016, 73, 3337-3349.	5.4	111
27	Distinct roles of Central missing and Dispatched in sending the Hedgehog signal. Development (Cambridge), 2001, 128, 5119-5127.	2.5	89
28	The Cell Adhesion Molecule Echinoid Functions as a Tumor Suppressor and Upstream Regulator of the Hippo Signaling Pathway. Developmental Cell, 2012, 22, 255-267.	7.0	88
29	Intestinal epithelium-derived BMP controls stem cell self-renewal in Drosophila adult midgut. ELife, 2014, 3, e01857.	6.0	88
30	G protein-coupled receptor kinase 2 promotes high-level Hedgehog signaling by regulating the active state of Smo through kinase-dependent and kinase-independent mechanisms in <i>Drosophila</i> . Genes and Development, 2010, 24, 2054-2067.	5.9	87
31	Tuberous sclerosis complex and Myc coordinate the growth and division of <i>Drosophila</i> intestinal stem cells. Journal of Cell Biology, 2011, 193, 695-710.	5.2	87
32	SENP3 maintains the stability and function of regulatory T cells via BACH2 deSUMOylation. Nature Communications, 2018, 9, 3157.	12.8	87
33	Smoothened transduces Hedgehog signal by forming a complex with Evc/Evc2. Cell Research, 2012, 22, 1593-1604.	12.0	85
34	Casein Kinase 2 Promotes Hedgehog Signaling by Regulating both Smoothened and Cubitus Interruptus. Journal of Biological Chemistry, 2010, 285, 37218-37226.	3.4	81
35	Deubiquitination of Ci/Gli by Usp7/HAUSP Regulates Hedgehog Signaling. Developmental Cell, 2015, 34, 58-72.	7.0	75
36	Hippo signaling pathway and organ size control. Fly, 2009, 3, 68-73.	1.7	66

#	Article	IF	CITATIONS
37	Multisite interaction with Sufu regulates Ci/Gli activity through distinct mechanisms in Hh signal transduction. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 6383-6388.	7.1	60
38	Hedgehog signaling mechanism and role in cancer. Seminars in Cancer Biology, 2022, 85, 107-122.	9.6	60
39	Multiple Cos2/Ci interactions regulate Ci subcellular localization through microtubule dependent and independent mechanisms. Developmental Biology, 2004, 268, 493-505.	2.0	59
40	Fused–Costal2 protein complex regulates Hedgehog-induced Smo phosphorylation and cell-surface accumulation. Genes and Development, 2007, 21, 1949-1963.	5.9	59
41	The Hedgehog-induced Smoothened conformational switch assembles a signaling complex that activates Fused by promoting its dimerization and phosphorylation. Development (Cambridge), 2011, 138, 4219-4231.	2.5	56
42	Par-1 Regulates Tissue Growth by Influencing Hippo Phosphorylation Status and Hippo-Salvador Association. PLoS Biology, 2013, 11, e1001620.	5.6	56
43	Injury-stimulated Hedgehog signaling promotes regenerative proliferation of <i>Drosophila</i> intestinal stem cells. Journal of Cell Biology, 2015, 208, 807-819.	5.2	56
44	Acylglycerol Kinase Maintains Metabolic State and Immune Responses of CD8+ T Cells. Cell Metabolism, 2019, 30, 290-302.e5.	16.2	55
45	Injury-stimulated and self-restrained BMP signaling dynamically regulates stem cell pool size during <i>Drosophila</i> midgut regeneration. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E2699-E2708.	7.1	52
46	Converse Conformational Control of Smoothened Activity by Structurally Related Small Molecules. Journal of Biological Chemistry, 2009, 284, 20876-20884.	3.4	51
47	Drosophila Myc integrates multiple signaling pathways to regulate intestinal stem cell proliferation during midgut regeneration. Cell Research, 2013, 23, 1133-1146.	12.0	51
48	Regulation of Smoothened Trafficking and Hedgehog Signaling by the SUMO Pathway. Developmental Cell, 2016, 39, 438-451.	7.0	49
49	Hippo signaling is intrinsically regulated during cell cycle progression by APC/C ^{Cdh1} . Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 9423-9432.	7.1	48
50	Regulation of Smoothened Phosphorylation and High-Level Hedgehog Signaling Activity by a Plasma Membrane Associated Kinase. PLoS Biology, 2016, 14, e1002481.	5.6	48
51	Phosphorylation of Ci/Cli by Fused Family Kinases Promotes Hedgehog Signaling. Developmental Cell, 2019, 50, 610-626.e4.	7.0	47
52	Overlapping functions of the MAP4K family kinases Hppy and Msn in Hippo signaling. Cell Discovery, 2015, 1, 15038.	6.7	46
53	Dimerization and Cytoplasmic Localization Regulate Hippo Kinase Signaling Activity in Organ Size Control. Journal of Biological Chemistry, 2012, 287, 5784-5796.	3.4	44
54	Hedgehog induces formation of PKA-Smoothened complexes to promote Smoothened phosphorylation and pathway activation. Science Signaling, 2014, 7, ra62.	3.6	44

#	Article	IF	CITATIONS
55	Structural insight into the mutual recognition and regulation between Suppressor of Fused and Gli/Ci. Nature Communications, 2013, 4, 2608.	12.8	43
56	CDK7 regulates organ size and tumor growth by safeguarding the Hippo pathway effector Yki/Yap/Taz in the nucleus. Genes and Development, 2020, 34, 53-71.	5.9	43
57	Regulation of Gli ciliary localization and Hedgehog signaling by the PY-NLS/karyopherin-β2 nuclear import system. PLoS Biology, 2017, 15, e2002063.	5.6	41
58	CK1 in Developmental Signaling. Current Topics in Developmental Biology, 2017, 123, 303-329.	2.2	40
59	Regulation of wingless signaling by the CKI family in Drosophila limb development. Developmental Biology, 2006, 299, 221-237.	2.0	38
60	Hedgehog-regulated atypical PKC promotes phosphorylation and activation of Smoothened and Cubitus interruptus in <i>Drosophila</i> . Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E4842-50.	7.1	35
61	Regulation of Yki/Yap subcellular localization and Hpo signaling by a nuclear kinase PRP4K. Nature Communications, 2018, 9, 1657.	12.8	35
62	Identification of Domains Responsible for Ubiquitin-Dependent Degradation of dMyc by Glycogen Synthase Kinase 3β and Casein Kinase 1 Kinases. Molecular and Cellular Biology, 2009, 29, 3424-3434.	2.3	34
63	Hedgehog-induced phosphorylation by CK1 sustains the activity of Ci/Gli activator. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E5651-60.	7.1	34
64	Suppressor of fused impedes Ci/Gli nuclear import by opposing Trn/Kapβ2 in Hedgehog signaling. Journal of Cell Science, 2014, 127, 1092-103.	2.0	34
65	Hedgehog reciprocally controls trafficking of Smo and Ptc through the Smurf family of E3 ubiquitin ligases. Science Signaling, 2018, 11, .	3.6	34
66	Human CAFs promote lymphangiogenesis in ovarian cancer via the Hh-VEGF-C signaling axis. Oncotarget, 2017, 8, 67315-67328.	1.8	34
67	Degrading Ci: who is Cul-pable?. Genes and Development, 2002, 16, 2315-2321.	5.9	31
68	Regulation of Smoothened ubiquitination and cell surface expression by a Cul4-DDB1-GÎ ² E3 ubiquitin ligase complex. Journal of Cell Science, 2018, 131, .	2.0	26
69	Hippo-Independent Regulation of Yki/Yap/Taz: A Non-canonical View. Frontiers in Cell and Developmental Biology, 2021, 9, 658481.	3.7	25
70	Suppression of Hedgehog signaling by Cul3 ligases in proliferation control of retinal precursors. Developmental Biology, 2007, 308, 106-119.	2.0	22
71	Hedgehog signaling downregulates Suppressor of Fused through the HIB/SPOP-Crn axis in Drosophila. Cell Research, 2014, 24, 595-609.	12.0	22
72	YAP inhibits ERα and ER+ breast cancer growth by disrupting a TEAD-ERα signaling axis. Nature Communications, 2022, 13, .	12.8	22

#	Article	IF	CITATIONS
73	Transducing the Hedgehog Signal Across the Plasma Membrane. Fly, 2007, 1, 333-336.	1.7	16
74	Capping Enzyme mRNA-cap/RNGTT Regulates Hedgehog Pathway Activity by Antagonizing Protein Kinase A. Scientific Reports, 2017, 7, 2891.	3.3	15
75	Using Immunoprecipitation to Study Protein–Protein Interactions in the Hedgehog-Signaling Pathway. Methods in Molecular Biology, 2007, 397, 215-229.	0.9	13
76	Gli Phosphorylation Code in Hedgehog Signal Transduction. Frontiers in Cell and Developmental Biology, 2022, 10, 846927.	3.7	11
77	Dual role of BMP signaling in the regulation of <i>Drosophila</i> intestinal stem cell self-renewal. Fly, 2017, 11, 297-302.	1.7	8
78	Regulation of Hedgehog Signal Transduction by Ubiquitination and Deubiquitination. International Journal of Molecular Sciences, 2021, 22, 13338.	4.1	8
79	Drosophila Casein Kinase 2 (CK2) Promotes Warts Protein to Suppress Yorkie Protein Activity for Growth Control. Journal of Biological Chemistry, 2014, 289, 33598-33607.	3.4	7
80	Expression and purification of fused kinase from insect cells for in vitro kinase assay. STAR Protocols, 2021, 2, 100376.	1.2	4
81	Gilgamesh (Gish)/CK1γ regulates tissue homeostasis and aging in adult <i>Drosophila</i> midgut. Journal of Cell Biology, 2020, 219, .	5.2	3
82	Misshapen Connects Food, Mechanosensing, and Intestinal Growth. Developmental Cell, 2018, 45, 417-418.	7.0	2
83	Cell-Based Assays for Smoothened Ubiquitination and Sumoylation. Methods in Molecular Biology, 2022, 2374, 139-147.	0.9	1
84	Ci/Gli Phosphorylation by the Fused/Ulk Family Kinases. Methods in Molecular Biology, 2022, 2374, 213-229.	0.9	1
85	Hedgehog fuels gut regeneration. Oncotarget, 2015, 6, 20750-20751.	1.8	1
86	Regulation of Smoothened Trafficking and Abundance in Hedgehog Signaling. Frontiers in Cell and Developmental Biology, 2022, 10, 847844.	3.7	1
87	Receptor Modifications in Hedgehog Regulation. Topics in Medicinal Chemistry, 2014, , 109-125.	0.8	0
88	Characterization of Smoothened Phosphorylation and Activation. Methods in Molecular Biology, 2022, 2374, 121-137.	0.9	0
89	Overview of Hedgehog Signaling Pathway. , 2011, , 1-15.		0
90	Revealing the secret behind Smo cholesterylation. Cell Research, 2022, 32, 327-328.	12.0	0