
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5243548/publications.pdf Version: 2024-02-01



LESUE Y YEO

| #  | Article                                                                                                                                                                            | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Microscale acoustofluidics: Microfluidics driven via acoustics and ultrasonics. Reviews of Modern Physics, 2011, 83, 647-704.                                                      | 16.4 | 742       |
| 2  | Emerging Technologies for Next-Generation Point-of-Care Testing. Trends in Biotechnology, 2015, 33, 692-705.                                                                       | 4.9  | 583       |
| 3  | Surface Acoustic Wave Microfluidics. Annual Review of Fluid Mechanics, 2014, 46, 379-406.                                                                                          | 10.8 | 456       |
| 4  | Microfluidic Devices for Bioapplications. Small, 2011, 7, 12-48.                                                                                                                   | 5.2  | 455       |
| 5  | Ultrafast microfluidics using surface acoustic waves. Biomicrofluidics, 2009, 3, 012002.                                                                                           | 1.2  | 330       |
| 6  | Fabrication of microfluidic devices using polydimethylsiloxane. Biomicrofluidics, 2010, 4, .                                                                                       | 1.2  | 308       |
| 7  | Particle concentration and mixing in microdrops driven by focused surface acoustic waves. Journal of Applied Physics, 2008, 104, .                                                 | 1.1  | 268       |
| 8  | Interfacial destabilization and atomization driven by surface acoustic waves. Physics of Fluids, 2008, 20, .                                                                       | 1.6  | 229       |
| 9  | Piezoelectric ultrasonic micro/milli-scale actuators. Sensors and Actuators A: Physical, 2009, 152, 219-233.                                                                       | 2.0  | 195       |
| 10 | Surface acoustic wave concentration of particle and bioparticle suspensions. Biomedical Microdevices, 2007, 9, 647-656.                                                            | 1.4  | 191       |
| 11 | Interfacial Jetting Phenomena Induced by Focused Surface Vibrations. Physical Review Letters, 2009, 103, 024501.                                                                   | 2.9  | 173       |
| 12 | Microparticle collection and concentration via a miniature surface acoustic wave device. Lab on A<br>Chip, 2007, 7, 618.                                                           | 3.1  | 168       |
| 13 | Uniform mixing in paper-based microfluidic systems using surface acoustic waves. Lab on A Chip, 2012, 12, 773-779.                                                                 | 3.1  | 153       |
| 14 | Miniature inhalation therapy platform using surface acoustic wave microfluidic atomization. Lab on A<br>Chip, 2009, 9, 2184.                                                       | 3.1  | 151       |
| 15 | Electrospinning carbon nanotube polymer composite nanofibers. Journal of Experimental<br>Nanoscience, 2006, 1, 177-209.                                                            | 1.3  | 134       |
| 16 | Frequency effects on the scale and behavior of acoustic streaming. Physical Review E, 2014, 89, 013203.                                                                            | 0.8  | 130       |
| 17 | Paper-Based Microfluidic Surface Acoustic Wave Sample Delivery and Ionization Source for Rapid and Sensitive Ambient Mass Spectrometry. Analytical Chemistry, 2011, 83, 3260-3266. | 3.2  | 113       |
| 18 | Atomization off thin water films generated by high-frequency substrate wave vibrations. Physical<br>Review E, 2012, 86, 056312.                                                    | 0.8  | 113       |

| #  | Article                                                                                                                                                                          | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Exploitation of surface acoustic waves to drive size-dependent microparticle concentration within a droplet. Lab on A Chip, 2010, 10, 2979.                                      | 3.1 | 110       |
| 20 | A New ac Electrospray Mechanism by Maxwell-Wagner Polarization and Capillary Resonance. Physical<br>Review Letters, 2004, 92, 133902.                                            | 2.9 | 107       |
| 21 | Ultrasonic nebulization platforms for pulmonary drug delivery. Expert Opinion on Drug Delivery, 2010, 7, 663-679.                                                                | 2.4 | 106       |
| 22 | Rapid generation of protein aerosols and nanoparticles via surface acoustic wave atomization.<br>Nanotechnology, 2008, 19, 455103.                                               | 1.3 | 103       |
| 23 | Ultrafast, One-Step, Salt-Solution-Based Acoustic Synthesis of Ti <sub>3</sub> C <sub>2</sub> MXene.<br>ACS Nano, 2021, 15, 4287-4293.                                           | 7.3 | 103       |
| 24 | AC electrospray biomaterials synthesis. Biomaterials, 2005, 26, 6122-6128.                                                                                                       | 5.7 | 99        |
| 25 | Rapid fluid flow and mixing induced in microchannels using surface acoustic waves. Europhysics<br>Letters, 2009, 87, 47003.                                                      | 0.7 | 99        |
| 26 | Evaporative self-assembly assisted synthesis of polymeric nanoparticles by surface acoustic wave atomization. Nanotechnology, 2008, 19, 145301.                                  | 1.3 | 98        |
| 27 | Acoustically-Driven Trion and Exciton Modulation in Piezoelectric Two-Dimensional<br>MoS <sub>2</sub> . Nano Letters, 2016, 16, 849-855.                                         | 4.5 | 91        |
| 28 | The extraction of liquid, protein molecules and yeast cells from paper through surface acoustic wave atomization. Lab on A Chip, 2010, 10, 470-476.                              | 3.1 | 87        |
| 29 | Unique fingering instabilities and soliton-like wave propagation in thin acoustowetting films. Nature<br>Communications, 2012, 3, 1167.                                          | 5.8 | 86        |
| 30 | Transmitting high power rf acoustic radiation via fluid couplants into superstrates for microfluidics. Applied Physics Letters, 2009, 94, .                                      | 1.5 | 84        |
| 31 | Organosilane deposition for microfluidic applications. Biomicrofluidics, 2011, 5, 36501-365017.                                                                                  | 1.2 | 84        |
| 32 | Quantification of surface acoustic wave induced chaotic mixing-flows in microfluidic wells. Sensors and Actuators B: Chemical, 2011, 160, 1565-1572.                             | 4.0 | 81        |
| 33 | Effective pulmonary delivery of an aerosolized plasmid DNA vaccine via surface acoustic wave nebulization. Respiratory Research, 2014, 15, 60.                                   | 1.4 | 81        |
| 34 | Film drainage between two surfactant-coated drops colliding at constant approach velocity. Journal of Colloid and Interface Science, 2003, 257, 93-107.                          | 5.0 | 79        |
| 35 | Particle concentration via acoustically driven microcentrifugation: microPIV flow visualization and numerical modelling studies. Microfluidics and Nanofluidics, 2010, 8, 73-84. | 1.0 | 76        |
| 36 | Template-free Synthesis and Encapsulation Technique for Layer-by-Layer Polymer Nanocarrier<br>Fabrication. ACS Nano, 2011, 5, 9583-9591.                                         | 7.3 | 76        |

| #  | Article                                                                                                                                                                       | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | A scaffold cell seeding method driven by surface acoustic waves. Biomaterials, 2007, 28, 4098-4104.                                                                           | 5.7  | 74        |
| 38 | Microfluidic Colloidal Island Formation and Erasure Induced by Surface Acoustic Wave Radiation.<br>Physical Review Letters, 2008, 101, 084502.                                | 2.9  | 74        |
| 39 | Surface Vibration Induced Spatial Ordering of Periodic Polymer Patterns on a Substrate. Langmuir, 2008, 24, 10629-10632.                                                      | 1.6  | 71        |
| 40 | A brief review of actuation at the micro-scale using electrostatics, electromagnetics and piezoelectric ultrasonics. Acoustical Science and Technology, 2010, 31, 115-123.    | 0.3  | 69        |
| 41 | Capillary wave motion excited by high frequency surface acoustic waves. Physics of Fluids, 2010, 22, .                                                                        | 1.6  | 66        |
| 42 | UV epoxy bonding for enhanced SAW transmission and microscale acoustofluidic integration. Lab on<br>A Chip, 2012, 12, 2970.                                                   | 3.1  | 66        |
| 43 | Mixed mode of dissolving immersed nanodroplets at a solid–water interface. Soft Matter, 2015, 11,<br>1889-1900.                                                               | 1.2  | 65        |
| 44 | High frequency acoustic cell stimulation promotes exosome generation regulated by a calcium-dependent mechanism. Communications Biology, 2020, 3, 553.                        | 2.0  | 65        |
| 45 | Effect of surface acoustic waves on the viability, proliferation and differentiation of primary osteoblast-like cells. Biomicrofluidics, 2009, 3, 034102.                     | 1.2  | 64        |
| 46 | Highly Ordered Arrays of Femtoliter Surface Droplets. Small, 2015, 11, 4850-4855.                                                                                             | 5.2  | 64        |
| 47 | Piezoelectric ultrasonic resonant motor with stator diameter less than 250 µm:<br>the <i>Proteus</i> motor. Journal of Micromechanics and Microengineering, 2009, 19, 022001. | 1.5  | 63        |
| 48 | Pulmonary monoclonal antibody delivery via a portable microfluidic nebulization platform.<br>Biomicrofluidics, 2015, 9, 052603.                                               | 1.2  | 63        |
| 49 | HYbriD Resonant Acoustics (HYDRA). Advanced Materials, 2016, 28, 1970-1975.                                                                                                   | 11.1 | 63        |
| 50 | STATIC AND SPONTANEOUS ELECTROWETTING. Modern Physics Letters B, 2005, 19, 549-569.                                                                                           | 1.0  | 62        |
| 51 | Continuous flow actuation between external reservoirs in small-scale devices driven by surface acoustic waves. Lab on A Chip, 2014, 14, 750-758.                              | 3.1  | 62        |
| 52 | Acoustically-mediated intracellular delivery. Nanoscale, 2018, 10, 13165-13178.                                                                                               | 2.8  | 59        |
| 53 | Microscale Capillary Wave Turbulence Excited by High Frequency Vibration. Langmuir, 2013, 29, 3835-3845.                                                                      | 1.6  | 58        |
| 54 | Rapid Enhancement of Cellular Spheroid Assembly by Acoustically Driven Microcentrifugation. ACS<br>Biomaterials Science and Engineering, 2016, 2, 1013-1022.                  | 2.6  | 58        |

LESLIE Y YEO

| #  | Article                                                                                                                                                                                            | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Enabling practical surface acoustic wave nebulizer drug delivery via amplitude modulation. Lab on A<br>Chip, 2014, 14, 1858-1865.                                                                  | 3.1 | 57        |
| 56 | Planar microfluidic drop splitting and merging. Lab on A Chip, 2015, 15, 1942-1951.                                                                                                                | 3.1 | 54        |
| 57 | Fluid-structure interaction in deformable microchannels. Physics of Fluids, 2012, 24, .                                                                                                            | 1.6 | 53        |
| 58 | Electrohydrodynamic surface microvortices for mixing and particle trapping. Applied Physics Letters, 2006, 88, 233512.                                                                             | 1.5 | 52        |
| 59 | Continuous tuneable droplet ejection <i>via</i> pulsed surface acoustic wave jetting. Soft Matter, 2018, 14, 5721-5727.                                                                            | 1.2 | 52        |
| 60 | CFD simulation of aerosol delivery to a human lung via surface acoustic wave nebulization.<br>Biomechanics and Modeling in Mechanobiology, 2017, 16, 2035-2050.                                    | 1.4 | 50        |
| 61 | Electrokinetic actuation of low conductivity dielectric liquids. Sensors and Actuators B: Chemical, 2009, 140, 287-294.                                                                            | 4.0 | 49        |
| 62 | Hydrophobicâ€Forceâ€Driven Removal of Organic Compounds from Water by Reduced Graphene Oxides<br>Generated in Agarose Hydrogels. Angewandte Chemie - International Edition, 2018, 57, 11177-11181. | 7.2 | 49        |
| 63 | The Dynamics of Marangoni-Driven Local Film Drainage between Two Drops. Journal of Colloid and Interface Science, 2001, 241, 233-247.                                                              | 5.0 | 48        |
| 64 | Electrowetting films on parallel line electrodes. Physical Review E, 2006, 73, 011605.                                                                                                             | 0.8 | 48        |
| 65 | Rapid production of protein-loaded biodegradable microparticles using surface acoustic waves.<br>Biomicrofluidics, 2009, 3, 014102.                                                                | 1.2 | 48        |
| 66 | Universal nanodroplet branches from confining the Ouzo effect. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 10332-10337.                            | 3.3 | 48        |
| 67 | Microfluidic blood plasma separation via bulk electrohydrodynamic flows. Biomicrofluidics, 2007, 1, 014103.                                                                                        | 1.2 | 47        |
| 68 | Surface acoustic waves as an energy source for drop scale synthetic chemistry. Lab on A Chip, 2009, 9,<br>754.                                                                                     | 3.1 | 46        |
| 69 | Miniaturized Labâ€onâ€aâ€Ðisc (miniLOAD). Small, 2012, 8, 1881-1888.                                                                                                                               | 5.2 | 46        |
| 70 | Engineering of Nebulized Metal–Phenolic Capsules for Controlled Pulmonary Deposition. Advanced<br>Science, 2020, 7, 1902650.                                                                       | 5.6 | 46        |
| 71 | Acoustomicrofluidic Synthesis of Pristine Ultrathin<br>Ti <sub>3</sub> C <sub>2</sub> T <sub><i>z</i></sub> MXene Nanosheets and Quantum Dots. ACS Nano,<br>2021, 15, 12099-12108.                 | 7.3 | 46        |
| 72 | Marangoni instability of a thin liquid film resting on a locally heated horizontal wall. Physical<br>Review E, 2003, 67, 056315.                                                                   | 0.8 | 45        |

| #  | Article                                                                                                                                                                                          | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | PHASE INVERSION AND ASSOCIATED PHENOMENA. Multiphase Science and Technology, 2000, 12, 66.                                                                                                       | 0.2 | 45        |
| 74 | Nanoscale pillar hypersonic surface phononic crystals. Physical Review B, 2016, 94, .                                                                                                            | 1.1 | 43        |
| 75 | Direct visualization of surface acoustic waves along substrates using smoke particles. Applied Physics<br>Letters, 2007, 91, .                                                                   | 1.5 | 42        |
| 76 | A piezoelectric ultrasonic linear micromotor using a slotted stator. IEEE Transactions on<br>Ultrasonics, Ferroelectrics, and Frequency Control, 2010, 57, 1868-1874.                            | 1.7 | 42        |
| 77 | Diatrack particle tracking software: Review of applications and performance evaluation. Traffic, 2017, 18, 840-852.                                                                              | 1.3 | 42        |
| 78 | A simple predictive tool for modelling phase inversion in liquid–liquid dispersions. Chemical<br>Engineering Science, 2002, 57, 1069-1072.                                                       | 1.9 | 41        |
| 79 | Monolithic Phononic Crystals with a Surface Acoustic Band Gap from Surface Phonon-Polariton<br>Coupling. Physical Review Letters, 2014, 113, 215503.                                             | 2.9 | 41        |
| 80 | Toward Complete Miniaturisation of Flow Injection Analysis Systems: Microfluidic Enhancement of Chemiluminescent Detection. Analytical Chemistry, 2014, 86, 10812-10819.                         | 3.2 | 41        |
| 81 | Dynamics of liquid films exposed to high-frequency surface vibration. Physical Review E, 2015, 91, 053015.                                                                                       | 0.8 | 41        |
| 82 | Microscale anechoic architecture: acoustic diffusers for ultra low power microparticle separation via traveling surface acoustic waves. Lab on A Chip, 2015, 15, 43-46.                          | 3.1 | 41        |
| 83 | Acoustic–Excitonic Coupling for Dynamic Photoluminescence Manipulation of Quasi <i>â€</i> 2D<br>MoS <sub>2</sub> Nanoflakes. Advanced Optical Materials, 2015, 3, 888-894.                       | 3.6 | 39        |
| 84 | Nozzleless spray cooling using surface acoustic waves. Journal of Aerosol Science, 2015, 79, 48-60.                                                                                              | 1.8 | 39        |
| 85 | Assessment of the potential of a high frequency acoustomicrofluidic nebulisation platform for inhaled stem cell therapy. Integrative Biology (United Kingdom), 2016, 8, 12-20.                   | 0.6 | 37        |
| 86 | Submicron Particle and Cell Concentration in a Closed Chamber Surface Acoustic Wave<br>Microcentrifuge. Analytical Chemistry, 2020, 92, 10024-10032.                                             | 3.2 | 37        |
| 87 | High Frequency Sonoprocessing: A New Field of Cavitationâ€Free Acoustic Materials Synthesis,<br>Processing, and Manipulation. Advanced Science, 2021, 8, 2001983.                                | 5.6 | 37        |
| 88 | Triple Degree-of-Freedom Piezoelectric Ultrasonic Micromotor via Flexural-Axial. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2009, 56, 1716-1724.                   | 1.7 | 35        |
| 89 | Substrate dependent drop deformation and wetting under high frequency vibration. Soft Matter, 2011,<br>7, 7976.                                                                                  | 1.2 | 35        |
| 90 | Double flow reversal in thin liquid films driven by megahertz-order surface vibration. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2014, 470, 20130765. | 1.0 | 35        |

| #   | Article                                                                                                                                                                                                                       | IF   | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 91  | Simple, low cost MHz-order acoustomicrofluidics using aluminium foil electrodes. Lab on A Chip, 2014, 14, 1802-1805.                                                                                                          | 3.1  | 35        |
| 92  | Extensional flow of low-viscosity fluids in capillary bridges formed by pulsed surface acoustic wave jetting. New Journal of Physics, 2011, 13, 023005.                                                                       | 1.2  | 34        |
| 93  | The appearance of boundary layers and drift flows due to high-frequency surface waves. Journal of Fluid Mechanics, 2012, 707, 482-495.                                                                                        | 1.4  | 34        |
| 94  | The axial–torsional vibration of pretwisted beams. Journal of Sound and Vibration, 2009, 321, 115-136.                                                                                                                        | 2.1  | 33        |
| 95  | Poloidal Flow and Toroidal Particle Ring Formation in a Sessile Drop Driven by Megahertz Order<br>Vibration. Langmuir, 2014, 30, 11243-11247.                                                                                 | 1.6  | 33        |
| 96  | Acoustomicrofluidic assembly of oriented and simultaneously activated metal–organic frameworks.<br>Nature Communications, 2019, 10, 2282.                                                                                     | 5.8  | 33        |
| 97  | Ultrafast Acoustofluidic Exfoliation of Stratified Crystals. Advanced Materials, 2018, 30, e1704756.                                                                                                                          | 11.1 | 32        |
| 98  | Rotational microfluidic motor for on-chip microcentrifugation. Applied Physics Letters, 2011, 98, .                                                                                                                           | 1.5  | 31        |
| 99  | Liquid Phase Acoustic Wave Exfoliation of Layered MoS <sub>2</sub> : Critical Impact of Electric Field in Efficiency. Chemistry of Materials, 2018, 30, 5593-5601.                                                            | 3.2  | 31        |
| 100 | Electric tempest in a teacup: The tea leaf analogy to microfluidic blood plasma separation. Applied<br>Physics Letters, 2006, 89, 103516.                                                                                     | 1.5  | 30        |
| 101 | An ultrasonic piezoelectric motor utilizing axial-torsional coupling in a pretwisted non-circular cross-sectioned prismatic beam. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2008, 55, 832-840. | 1.7  | 30        |
| 102 | Vibrationâ€Induced Deagglomeration and Shearâ€Induced Alignment of Carbon Nanotubes in Air. Advanced<br>Functional Materials, 2015, 25, 1014-1023.                                                                            | 7.8  | 30        |
| 103 | On hip Generation of Vortical Flows for Microfluidic Centrifugation. Small, 2020, 16, e1903605.                                                                                                                               | 5.2  | 30        |
| 104 | Piezoelectric ultrasonic bidirectional linear actuator for micropositioning fulfilling Feynman's<br>criteria. Applied Physics Letters, 2008, 92, 014107.                                                                      | 1.5  | 29        |
| 105 | The dynamics of surface acoustic waveâ€driven scaffold cell seeding. Biotechnology and<br>Bioengineering, 2009, 103, 387-401.                                                                                                 | 1.7  | 29        |
| 106 | Enhanced Ion Current Rectification in 2D Grapheneâ€Based Nanofluidic Devices. Advanced Science, 2015,<br>2, 1500062.                                                                                                          | 5.6  | 28        |
| 107 | Acoustically-driven thread-based tuneable gradient generators. Lab on A Chip, 2016, 16, 2820-2828.                                                                                                                            | 3.1  | 28        |
| 108 | Cassie–Wenzel wetting transition on nanostructured superhydrophobic surfaces induced by surface<br>acoustic waves. Applied Physics Letters, 2020, 116, .                                                                      | 1.5  | 27        |

| #   | Article                                                                                                                                                                                               | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Double aperture focusing transducer for controlling microparticle motions in trapezoidal microchannels with surface acoustic waves. Applied Physics Letters, 2009, 95, 134101.                        | 1.5 | 26        |
| 110 | Motility induced changes in viscosity of suspensions of swimming microbes in extensional flows. Soft<br>Matter, 2015, 11, 4658-4668.                                                                  | 1.2 | 26        |
| 111 | Amplitude modulation schemes for enhancing acoustically-driven microcentrifugation and micromixing. Biomicrofluidics, 2016, 10, 054106.                                                               | 1.2 | 26        |
| 112 | Drop manipulation and surgery using electric fields. Journal of Colloid and Interface Science, 2007, 306, 368-378.                                                                                    | 5.0 | 25        |
| 113 | Hydroxypropyl Cellulose Methacrylate as a Photoâ€Patternable and Biodegradable Hybrid Paper<br>Substrate for Cell Culture and Other Bioapplications. Advanced Healthcare Materials, 2014, 3, 543-554. | 3.9 | 25        |
| 114 | Rapid microscale in-gel processing and digestion of proteins using surface acoustic waves. Lab on A<br>Chip, 2010, 10, 1518.                                                                          | 3.1 | 24        |
| 115 | Graphene-Based Planar Nanofluidic Rectifiers. Journal of Physical Chemistry C, 2014, 118, 21856-21865.                                                                                                | 1.5 | 24        |
| 116 | Stability and efficacy of synthetic cationic antimicrobial peptides nebulized using high frequency acoustic waves. Biomicrofluidics, 2016, 10, 034115.                                                | 1.2 | 24        |
| 117 | Aggregation of a dense suspension of particles in a microwell using surface acoustic wave microcentrifugation. Microfluidics and Nanofluidics, 2019, 23, 1.                                           | 1.0 | 24        |
| 118 | Acoustotemplating: rapid synthesis of freestanding quasi-2D MOF/graphene oxide heterostructures for supercapacitor applications. Journal of Materials Chemistry A, 2022, 10, 7058-7072.               | 5.2 | 24        |
| 119 | Numerical modeling of electro-conjugate fluid flows. Sensors and Actuators A: Physical, 2010, 161, 152-157.                                                                                           | 2.0 | 23        |
| 120 | Unique flow transitions and particle collection switching phenomena in a microchannel induced by surface acoustic waves. Applied Physics Letters, 2010, 97, 234106.                                   | 1.5 | 23        |
| 121 | Free Radical Generation from High-Frequency Electromechanical Dissociation of Pure Water. Journal of Physical Chemistry Letters, 2020, 11, 4655-4661.                                                 | 2.1 | 23        |
| 122 | Acoustofection: High-Frequency Vibrational Membrane Permeabilization for Intracellular siRNA<br>Delivery into Nonadherent Cells. ACS Applied Bio Materials, 2021, 4, 2781-2789.                       | 2.3 | 23        |
| 123 | Continuous Production of Janus and Composite Liquid Marbles with Tunable Coverage. ACS Applied Materials & Interfaces, 2016, 8, 17751-17756.                                                          | 4.0 | 22        |
| 124 | Plug-and-actuate on demand: multimodal individual addressability of microarray plates using modular<br>hybrid acoustic wave technology. Lab on A Chip, 2018, 18, 406-411.                             | 3.1 | 22        |
| 125 | In Situ Generation of Tunable Porosity Gradients in Hydrogelâ€Based Scaffolds for Microfluidic Cell<br>Culture. Advanced Healthcare Materials, 2014, 3, 1655-1670.                                    | 3.9 | 21        |
| 126 | RF-Activated Standing Surface Acoustic Wave for On-Chip Particle Manipulation. IEEE Transactions on<br>Microwave Theory and Techniques, 2014, 62, 1898-1904.                                          | 2.9 | 21        |

| #   | Article                                                                                                                                                                                                                          | IF   | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 127 | <i>In situ</i> generation of plasma-activated aerosols <i>via</i> surface acoustic wave nebulization for portable spray-based surface bacterial inactivation. Lab on A Chip, 2020, 20, 1856-1868.                                | 3.1  | 21        |
| 128 | A description of phase inversion behaviour in agitated liquid–liquid dispersions under the influence of the Marangoni effect. Chemical Engineering Science, 2002, 57, 3505-3520.                                                 | 1.9  | 20        |
| 129 | Graphene-mediated microfluidic transport and nebulization via high frequency Rayleigh wave substrate excitation. Lab on A Chip, 2016, 16, 3503-3514.                                                                             | 3.1  | 20        |
| 130 | Lamb to Rayleigh Wave Conversion on Superstrates as a Means to Facilitate Disposable<br>Acoustomicrofluidic Applications. Analytical Chemistry, 2019, 91, 12358-12368.                                                           | 3.2  | 20        |
| 131 | Simulation Studies of Phase Inversion in Agitated Vessels Using a Monte Carlo Technique. Journal of<br>Colloid and Interface Science, 2002, 248, 443-454.                                                                        | 5.0  | 19        |
| 132 | Increasing Exfoliation Yield in the Synthesis of MoS2 Quantum Dots for Optoelectronic and Other<br>Applications through a Continuous Multicycle Acoustomicrofluidic Approach. ACS Applied Nano<br>Materials, 2018, 1, 2503-2508. | 2.4  | 19        |
| 133 | Modelling and testing of a piezoelectric ultrasonic micro-motor suitable for <i>in<br/>vivo</i> micro-robotic applications. Journal of Micromechanics and Microengineering, 2010, 20, 115018.                                    | 1.5  | 18        |
| 134 | Precise drop dispensation on superhydrophobic surfaces using acoustic nebulization. Soft Matter, 2013, 9, 3631.                                                                                                                  | 1.2  | 18        |
| 135 | High frequency acoustic nebulization for pulmonary delivery of antibiotic alternatives against<br>Staphylococcus aureus. European Journal of Pharmaceutics and Biopharmaceutics, 2020, 151, 181-188.                             | 2.0  | 18        |
| 136 | Multi-degree-of-freedom ultrasonic micromotor for guidewire and catheter navigation: The<br>NeuroGlide actuator. Applied Physics Letters, 2012, 100, .                                                                           | 1.5  | 17        |
| 137 | High frequency acoustic permeabilisation of drugs through tissue for localised mucosal delivery. Lab<br>on A Chip, 2018, 18, 3272-3284.                                                                                          | 3.1  | 17        |
| 138 | Acoustopipetting: Tunable Nanoliter Sample Dispensing Using Surface Acoustic Waves. Analytical Chemistry, 2019, 91, 5621-5628.                                                                                                   | 3.2  | 17        |
| 139 | Coalescence of Droplets in a Microwell Driven by Surface Acoustic Waves. Langmuir, 2021, 37, 1578-1587.                                                                                                                          | 1.6  | 17        |
| 140 | Laguerre RungeKuttaFehlberg Method for Simulating Laser Pulse Propagation in Biological Tissue.<br>IEEE Journal of Selected Topics in Quantum Electronics, 2008, 14, 105-112.                                                    | 1.9  | 16        |
| 141 | Fast Surface Acoustic Wave-Matrix-Assisted Laser Desorption Ionization Mass Spectrometry of Cell<br>Response from Islets of Langerhans. Analytical Chemistry, 2013, 85, 2623-2629.                                               | 3.2  | 16        |
| 142 | Acoustially-mediated microfluidic nanofiltration through graphene films. Nanoscale, 2017, 9, 6497-6508.                                                                                                                          | 2.8  | 16        |
| 143 | Ultrafast assembly of swordlike Cu <sub>3</sub> (1,3,5-benzenetricarboxylate) <sub>n</sub><br>metal–organic framework crystals with exposed active metal sites. Nanoscale Horizons, 2020, 5,<br>1050-1057.                       | 4.1  | 16        |
| 144 | Programmable Phototaxis of Metal–Phenolic Particle Microswimmers. Advanced Materials, 2021, 33,<br>e2006177.                                                                                                                     | 11.1 | 16        |

| #   | Article                                                                                                                                                                                                                         | IF   | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 145 | Viscoelastic flow in a two-dimensional collapsible channel. Journal of Non-Newtonian Fluid<br>Mechanics, 2010, 165, 1204-1218.                                                                                                  | 1.0  | 15        |
| 146 | Self-assembled highly crystalline TiO2 mesostructures for sunlight-driven, pH-responsive photodegradation of dyes. Materials Research Bulletin, 2014, 55, 13-18.                                                                | 2.7  | 15        |
| 147 | A Novel Acoustomicrofluidic Nebulization Technique Yielding New Crystallization Morphologies.<br>Advanced Materials, 2018, 30, 1602040.                                                                                         | 11.1 | 15        |
| 148 | Fast three-dimensional micropatterning of PC12 cells in rapidly crosslinked hydrogel scaffolds using ultrasonic standing waves. Biofabrication, 2020, 12, 015013.                                                               | 3.7  | 15        |
| 149 | Surface acoustic wave solid-state rotational micromotor. Applied Physics Letters, 2012, 100, .                                                                                                                                  | 1.5  | 14        |
| 150 | Controlled morphogenesis and self-assembly of bismutite nanocrystals into three-dimensional nanostructures and their applications. Journal of Materials Chemistry A, 2014, 2, 2275-2282.                                        | 5.2  | 14        |
| 151 | Focused ion beam milling of microchannels in lithium niobate. Biomicrofluidics, 2012, 6, 012819.                                                                                                                                | 1.2  | 13        |
| 152 | An emerging reactor technology for chemical synthesis: Surface acoustic wave-assisted closed-vessel<br>Suzuki coupling reactions. Ultrasonics Sonochemistry, 2014, 21, 1305-1309.                                               | 3.8  | 13        |
| 153 | Tear Film Extensional Viscosity Is a Novel Potential Biomarker of Dry Eye Disease. Ophthalmology, 2019,<br>126, 1196-1198.                                                                                                      | 2.5  | 13        |
| 154 | Hydrodynamic instability of a thin viscous film between two drops. Journal of Colloid and Interface Science, 2003, 261, 575-579.                                                                                                | 5.0  | 12        |
| 155 | Extensional viscosity of copper nanowire suspensions in an aqueous polymer solution. Soft Matter, 2015, 11, 8076-8082.                                                                                                          | 1.2  | 12        |
| 156 | Acoustically enhanced heat transport. Review of Scientific Instruments, 2016, 87, 014902.                                                                                                                                       | 0.6  | 12        |
| 157 | Acoustomicrofluidic Concentration and Signal Enhancement of Fluorescent Nanodiamond Sensors.<br>Analytical Chemistry, 2021, 93, 16133-16141.                                                                                    | 3.2  | 12        |
| 158 | Shortâ€Duration High Frequency MegaHertzâ€Order Nanomechanostimulation Drives Early and Persistent<br>Osteogenic Differentiation in Mesenchymal Stem Cells. Small, 2022, 18, e2106823.                                          | 5.2  | 12        |
| 159 | Piezoelectric ultrasonic resonant micromotor with a volume of less than 1<br>mm <sup>3</sup> for use in medical microbots. , 2009, , .                                                                                          |      | 11        |
| 160 | UV/ozone-assisted low temperature preparation of mesoporous TiO <sub>2</sub> with tunable phase composition and enhanced solar light photocatalytic activity. Journal of Materials Chemistry A, 2014, 2, 18791-18795.           | 5.2  | 11        |
| 161 | Acoustically Driven Micromixing: Effect of Transducer Geometry. IEEE Transactions on Ultrasonics,<br>Ferroelectrics, and Frequency Control, 2019, 66, 1387-1394.                                                                | 1.7  | 11        |
| 162 | Enhanced Antimicrobial Activity and Low Phytotoxicity of Acoustically Synthesized Large Aspect Ratio<br>Cu-BTC Metal–Organic Frameworks with Exposed Metal Sites. ACS Applied Materials & Interfaces,<br>2021, 13, 58309-58318. | 4.0  | 11        |

| #   | Article                                                                                                                                                                        | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 163 | Using laser Doppler vibrometry to measure capillary surface waves on fluid-fluid interfaces.<br>Biomicrofluidics, 2010, 4, .                                                   | 1.2 | 10        |
| 164 | Surface acoustic wave micromotor with arbitrary axis rotational capability. Applied Physics Letters, 2011, 99, .                                                               | 1.5 | 10        |
| 165 | Dissolution dynamics of a suspension droplet in a binary solution for controlled nanoparticle assembly. Nanoscale, 2017, 9, 13441-13448.                                       | 2.8 | 10        |
| 166 | A Facile and Flexible Method for On-Demand Directional Speed Tunability in the Miniaturised Lab-on-a-Disc. Scientific Reports, 2017, 7, 6652.                                  | 1.6 | 10        |
| 167 | Microfluidic dielectrophoretic cell manipulation towards stable cell contact assemblies. Biomedical<br>Microdevices, 2018, 20, 95.                                             | 1.4 | 10        |
| 168 | Hybrid finite-difference/lattice Boltzmann simulations of microchannel and nanochannel acoustic streaming driven by surface acoustic waves. Physical Review Fluids, 2018, 3, . | 1.0 | 10        |
| 169 | Nanoscale plasma-activated aerosol generation for in situ surface pathogen disinfection.<br>Microsystems and Nanoengineering, 2022, 8, 41.                                     | 3.4 | 10        |
| 170 | Hybrid Surface and Bulk Resonant Acoustics for Concurrent Actuation and Sensing on a Single<br>Microfluidic Device. Analytical Chemistry, 2018, 90, 5335-5342.                 | 3.2 | 9         |
| 171 | In vivo deposition study of a new generation nebuliser utilising hybrid resonant acoustic (HYDRA)<br>technology. International Journal of Pharmaceutics, 2020, 580, 119196.    | 2.6 | 9         |
| 172 | Acoustic cavitation at low gas pressures in PZT-based ultrasonic systems. Ultrasonics Sonochemistry, 2021, 73, 105493.                                                         | 3.8 | 9         |
| 173 | Nebulization of siRNA for inhalation therapy based on a microfluidic surface acoustic wave platform.<br>Ultrasonics Sonochemistry, 2022, 88, 106088.                           | 3.8 | 9         |
| 174 | Micromotor of Less Than 1 mm^3 Volume for In Vivo Medical Procedures. , 2009, , .                                                                                              |     | 8         |
| 175 | UV Direct Write Metal Enhanced Redox (MER) Domain Engineering for Realization of Surface Acoustic Devices on Lithium Niobate. Advanced Materials Interfaces, 2014, 1, 1400006. | 1.9 | 8         |
| 176 | Hydrophobicâ€Forceâ€Driven Removal of Organic Compounds from Water by Reduced Graphene Oxides<br>Generated in Agarose Hydrogels. Angewandte Chemie, 2018, 130, 11347-11351.    | 1.6 | 8         |
| 177 | Miniaturised acoustofluidic tactile haptic actuator. Soft Matter, 2019, 15, 4146-4152.                                                                                         | 1.2 | 8         |
| 178 | Oscillation characteristics of low Weber number impinging micro-droplets. Theoretical and Computational Fluid Dynamics, 2019, 33, 197-213.                                     | 0.9 | 8         |
| 179 | Enhancing rate of water absorption in seeds via a miniature surface acoustic wave device. Royal<br>Society Open Science, 2019, 6, 181560.                                      | 1.1 | 8         |
| 180 | Pulmonary Deposition of Radionucleotide-Labeled Palivizumab: Proof-of-Concept Study. Frontiers in<br>Pharmacology, 2020, 11, 1291.                                             | 1.6 | 8         |

| #   | Article                                                                                                                                                              | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 181 | Rotating bouncing disks, tossing pizza dough, and the behavior of ultrasonic motors. Physical Review<br>E, 2009, 80, 046201.                                         | 0.8 | 7         |
| 182 | Phononâ€polariton entrapment in homogenous surface phonon cavities. Annalen Der Physik, 2016, 528,<br>365-372.                                                       | 0.9 | 7         |
| 183 | Enhancing greywater treatment via MHz-Order surface acoustic waves. Water Research, 2020, 169,<br>115187.                                                            | 5.3 | 7         |
| 184 | Concentration and mixing of particles in microdrops driven by focused surface acoustic waves. , 2008, , .                                                            |     | 6         |
| 185 | MicroPIV and micromixing study of corona wind induced microcentrifugation flows in a cylindrical cavity. Microfluidics and Nanofluidics, 2010, 8, 231-241.           | 1.0 | 6         |
| 186 | Acoustic enhancement of aerobic greywater treatment processes. Journal of Water Process Engineering, 2021, 44, 102321.                                               | 2.6 | 6         |
| 187 | Investigation of SAW atomization. , 2009, , .                                                                                                                        |     | 5         |
| 188 | A miniaturized surface acoustic wave atomizer with a disposable pump-free liquid supply system for continuous atomization. , 2011, , .                               |     | 5         |
| 189 | Rapid dry exfoliation method for tuneable production of molybdenum disulphide quantum dots and large micron-dimension sheets. Nanoscale, 2019, 11, 11626-11633.      | 2.8 | 5         |
| 190 | Nanofiltration Using Graphene-Epoxy Filter Media Actuated by Surface Acoustic Waves. Physical<br>Review Applied, 2021, 15, .                                         | 1.5 | 5         |
| 191 | Subwavelength confinement of propagating surface acoustic waves. Applied Physics Letters, 2021, 118, .                                                               | 1.5 | 5         |
| 192 | SAW atomization application on inhaled pulmonary drug delivery. , 2008, , .                                                                                          |     | 4         |
| 193 | The behavior of bouncing disks and pizza tossing. Europhysics Letters, 2009, 85, 60002.                                                                              | 0.7 | 3         |
| 194 | A study on axial and torsional resonant mode matching for a mechanical system with complex nonlinear geometries. Review of Scientific Instruments, 2010, 81, 063901. | 0.6 | 3         |
| 195 | ZnO/sapphire based layered surface acoustic wave devices for microfluidic applications. , 2011, , .                                                                  |     | 3         |
| 196 | Arbitrary axis rotating surface acoustic wave micro motor. , 2011, , .                                                                                               |     | 3         |
| 197 | Ab Initio DFT Simulations of Nanostructures. , 2012, , 11-17.                                                                                                        |     | 3         |
| 198 | Optimising Aerosol Delivery for Maxillary Sinus Deposition in a Post-FESS Sinonasal Cavities. Aerosol and Air Quality Research, 2021, 21, 210098.                    | 0.9 | 3         |

| #   | Article                                                                                                                                                                                                                      | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 199 | Electrowetting, Applications. , 2008, , 606-615.                                                                                                                                                                             |     | 3         |
| 200 | High frequency AC electrosprays: mechanisms and applications. WIT Transactions on Engineering Sciences, 2006, , .                                                                                                            | 0.0 | 3         |
| 201 | Unraveling interfacial jetting phenomena induced by focused surface acoustic waves. , 2009, , .                                                                                                                              |     | 2         |
| 202 | On-chip surface acoustic-wave driven microfluidic motors. Proceedings of SPIE, 2011, , .                                                                                                                                     | 0.8 | 2         |
| 203 | Microfluidic chip containing porous gradient for chemotaxis study. , 2011, , .                                                                                                                                               |     | 2         |
| 204 | Evaporative self-assembly of gold nanorings via a surface acoustic wave atomization. Proceedings of SPIE, 2011, , .                                                                                                          | 0.8 | 2         |
| 205 | AFM, Tapping Mode. , 2012, , 99-99.                                                                                                                                                                                          |     | 2         |
| 206 | Piezoelectric Materials for Microfluidics. , 2008, , 1654-1662.                                                                                                                                                              |     | 2         |
| 207 | 10.1063/1.3600775.1., 2011, , .                                                                                                                                                                                              |     | 2         |
| 208 | Frequency bandwidth limitation of external pulse electric fields in cylindrical micro-channel electrophoresis with analyte velocity modulation. Biosensors and Bioelectronics, 2005, 20, 2131-2135.                          | 5.3 | 1         |
| 209 | Electrokinetic Actuation of Low Conductivity Dielectric Liquids. , 2008, , .                                                                                                                                                 |     | 1         |
| 210 | Preface to Special Topic: Invited Papers from the 2009 Conference on Advances in Microfluidics and<br>Nanofluidics, The Hong Kong University of Science & Technology, Hong Kong, 2009.<br>Biomicrofluidics, 2009, 3, 011901. | 1.2 | 1         |
| 211 | Nanoparticle patterning in a microfluidic drop induced by surface acoustic waves. , 2009, , .                                                                                                                                |     | 1         |
| 212 | Surface Acoustic Waves: A New Paradigm for Driving Ultrafast Biomicrofluidics. , 2009, , .                                                                                                                                   |     | 1         |
| 213 | Inhaled Pulmonary Drug Delivery Platform Using Surface Acoustic Wave Atomization. , 2009, , .                                                                                                                                |     | 1         |
| 214 | AC Electroosmosis: Basics and Lab-on-a-Chip Applications. , 2012, , 25-30.                                                                                                                                                   |     | 1         |
| 215 | Lab-on-a-Disc: Miniaturized Lab-on-a-Disc (miniLOAD) (Small 12/2012). Small, 2012, 8, 1880-1880.                                                                                                                             | 5.2 | 1         |
| 216 | Actuation mechanisms for microfluidic biomedical devices. , 2013, , 100-138.                                                                                                                                                 |     | 1         |

Actuation mechanisms for microfluidic biomedical devices. , 2013, , 100-138. 216

| #   | Article                                                                                                                                                                                                                                              | IF   | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 217 | Surface acoustic streaming in microfluidic system for rapid multicellular tumor spheroids generation. Proceedings of SPIE, 2013, , .                                                                                                                 | 0.8  | 1         |
| 218 | Microfluidics: HYbriD Resonant Acoustics (HYDRA) (Adv. Mater. 10/2016). Advanced Materials, 2016, 28, 2088-2088.                                                                                                                                     | 11.1 | 1         |
| 219 | Actuation mechanisms for microfluidic biomedical devices. , 2021, , 125-162.                                                                                                                                                                         |      | 1         |
| 220 | 10.1063/1.3259624.1., 2010,,.                                                                                                                                                                                                                        |      | 1         |
| 221 | 10.1063/1.3662931.1.,2011,,.                                                                                                                                                                                                                         |      | 1         |
| 222 | Editorial: Innovative In Vitro Models for Pulmonary Physiology and Drug Delivery in Health and Disease. Frontiers in Bioengineering and Biotechnology, 2021, 9, 788682.                                                                              | 2.0  | 1         |
| 223 | High Frequency AC Electrospraying of Dielectric Liquids. , 2004, , 723.                                                                                                                                                                              |      | 0         |
| 224 | Modeling of Light Propagation through Biological Tissues: A Novel Approach. , 2007, , .                                                                                                                                                              |      | 0         |
| 225 | Rapid production of biocompatible polymeric nanoparticles for functionalization via radio-frequency acoustic atomization. , 2007, , .                                                                                                                |      | 0         |
| 226 | Nanoparticle patterning on 128-YX-LN substrates: The effects of surface acceleration and boundary layer streaming. , 2008, , .                                                                                                                       |      | 0         |
| 227 | Advances in Microfluidics and Nanofluidics. Applied Rheology, 2009, 19, 175-176.                                                                                                                                                                     | 3.5  | 0         |
| 228 | Editorial: A note from the new Co-Editor. Biomicrofluidics, 2009, 3, 020902.                                                                                                                                                                         | 1.2  | 0         |
| 229 | Preface to Special Topic: Papers from the 2009 Conference on Advances in Microfluidics and<br>Nanofluidics, The Hong Kong University of Science & Technology, Hong Kong, 2009. Biomicrofluidics,<br>2009, 3, 022301.                                 | 1.2  | 0         |
| 230 | Preface to Special Topic: Papers from the 13th International Conference on Surface and Colloid<br>Science (ICSCS) and the 83rd ACS Colloid and Surface Science Symposium, Columbia University, New<br>York, 2009. Biomicrofluidics, 2010, 4, 013101. | 1.2  | 0         |
| 231 | Fast Inertial Microfluidic Actuation and Manipulation Using Surface Acoustic Waves. , 2010, , .                                                                                                                                                      |      | 0         |
| 232 | ADMiER-ing thin but complex fluids. , 2011, , .                                                                                                                                                                                                      |      | 0         |
| 233 | Editorial: A new year and a new Associate Editor. Biomicrofluidics, 2011, 5, 010401.                                                                                                                                                                 | 1.2  | 0         |

| #   | Article                                                                                                                                                                                       | IF   | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 235 | A waveguide based microfluidic application. , 2013, , .                                                                                                                                       |      | 0         |
| 236 | Editorial: Moving on in biomicrofluidics. Biomicrofluidics, 2013, 7, 010401.                                                                                                                  | 1.2  | 0         |
| 237 | Crystallization: A Novel Acoustomicrofluidic Nebulization Technique Yielding New Crystallization<br>Morphologies (Adv. Mater. 3/2018). Advanced Materials, 2018, 30, 1870018.                 | 11.1 | 0         |
| 238 | Fluid–substrate interactions. , 2022, , 37-58.                                                                                                                                                |      | 0         |
| 239 | On-Chip Electrospray. , 2014, , 1-12.                                                                                                                                                         |      | 0         |
| 240 | Interfacial Electrokinetic Flow. , 2014, , 1-18.                                                                                                                                              |      | 0         |
| 241 | Wetting and Spreading. , 2014, , 1-16.                                                                                                                                                        |      | 0         |
| 242 | Vibration-Induced Wetting. , 0, , 7545-7555.                                                                                                                                                  |      | 0         |
| 243 | 10.1063/1.5145282.1., 2020, , .                                                                                                                                                               |      | 0         |
| 244 | Shortâ€Duration High Frequency MegaHertzâ€Order Nanomechanostimulation Drives Early and Persistent<br>Osteogenic Differentiation in Mesenchymal Stem Cells (Small 8/2022). Small, 2022, 18, . | 5.2  | 0         |

Osteogenic Differentiation in Mesenchymal Stem Cells (Small 8/2022). Small, 2022, 18, . 244