
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5243272/publications.pdf Version: 2024-02-01

PAIEEN VIRHARAD

#	Article	IF	CITATIONS
1	Neoplastic and immune single-cell transcriptomics define subgroup-specific intra-tumoral heterogeneity of childhood medulloblastoma. Neuro-Oncology, 2022, 24, 273-286.	1.2	52
2	A novel PLK1 inhibitor onvansertib effectively sensitizes MYC-driven medulloblastoma to radiotherapy. Neuro-Oncology, 2022, 24, 414-426.	1.2	15
3	Single-cell transcriptional analysis of human endothelial colony-forming cells from patients with low VWF levels. Blood, 2022, 139, 2240-2251.	1.4	9
4	Targeting the TP53/MDM2 axis enhances radiation sensitivity in atypical teratoid rhabdoid tumors. International Journal of Oncology, 2022, 60, .	3.3	4
5	SMYD3 Promotes Cell Cycle Progression by Inducing Cyclin D3 Transcription and Stabilizing the Cyclin D1 Protein in Medulloblastoma. Cancers, 2022, 14, 1673.	3.7	5
6	Venetoclax Cooperates with Ionizing Radiation to Attenuate Diffuse Midline Glioma Tumor Growth. Clinical Cancer Research, 2022, 28, 2409-2424.	7.0	6
7	ATRT-23. SIRT2 cooperates with SMARCB1 to induce a differentiation block in ATRT. Neuro-Oncology, 2022, 24, i8-i8.	1.2	0
8	HGG-20. PRMT5 promotes the formation and growth of pediatric high-grade glioma by maintaining tumor stem cell populations. Neuro-Oncology, 2022, 24, i64-i65.	1.2	0
9	DIPG-56. Development and application of a novel antibody against CD99 as a therapeutic strategy in Diffuse Midline Glioma. Neuro-Oncology, 2022, 24, i31-i31.	1.2	0
10	MEDB-80. CDK8 promotes stemness of MYC-driven medulloblastoma. Neuro-Oncology, 2022, 24, i125-i125.	1.2	0
11	IMMU-23. Novel gene-edited CAR-T cell therapy against Diffuse Intrinsic Pontine Glioma. Neuro-Oncology, 2022, 24, i86-i87.	1.2	0
12	RONC-05. Peri-transplant Radiation Therapy for Young Children Treated with High-Dose Chemotherapy for Primary Brain Tumors. Neuro-Oncology, 2022, 24, i177-i177.	1.2	0
13	MEDB-70. Metabolism mediated radiation resistance in MYC-driven Medulloblastoma. Neuro-Oncology, 2022, 24, i122-i123.	1.2	0
14	IMMU-21. Targeting the adenosinergic immune suppression pathway in high grade glioma synergizes with innate immune checkpoint blockade. Neuro-Oncology, 2022, 24, i86-i86.	1.2	0
15	ATRT-10. Single-cell transcriptional profiling of ATRTs reveals heterogeneous signatures of tumor and non-malignant cell populations. Neuro-Oncology, 2022, 24, i4-i5.	1.2	0
16	MEDB-81. Combined inhibition of CDK11 and EZH2 results in regression of MYC-amplified medulloblastoma. Neuro-Oncology, 2022, 24, i125-i125.	1.2	0
17	DIPG-61. Preclinical efficacy of combined radiotherapy with venetoclax treatment in targeting diffuse midline gliomas. Neuro-Oncology, 2022, 24, i32-i33.	1.2	0
18	MEDB-44. Transcriptomic resolution of subgroup-specific medulloblastoma architecture. Neuro-Oncology, 2022, 24, i115-i116.	1.2	0

#	Article	IF	CITATIONS
19	A Regulatory Loop of FBXW7-MYC-PLK1 Controls Tumorigenesis of MYC-Driven Medulloblastoma. Cancers, 2021, 13, 387.	3.7	11
20	Bromodomain and extra-terminalÂinhibitors—A consensus prioritisation after the Paediatric Strategy Forum for medicinal product development of epigenetic modifiers in children—ACCELERATE. European Journal of Cancer, 2021, 146, 115-124.	2.8	10
21	NTRK Fusions Can Co-Occur With H3K27M Mutations and May Define Druggable Subclones Within Diffuse Midline Gliomas. Journal of Neuropathology and Experimental Neurology, 2021, 80, 345-353.	1.7	5
22	The transcriptional landscape of Shh medulloblastoma. Nature Communications, 2021, 12, 1749.	12.8	47
23	Transcriptional control of DNA repair networks by CDK7 regulates sensitivity to radiation in MYC-driven medulloblastoma. Cell Reports, 2021, 35, 109013.	6.4	18
24	Converging evidence for inhibition of transcriptional control in high-grade gliomas. Neuro-Oncology, 2021, 23, 1225-1227.	1.2	1
25	Cryptic developmental events determine medulloblastoma radiosensitivity and cellular heterogeneity without altering transcriptomic profile. Communications Biology, 2021, 4, 616.	4.4	13
26	EMBR-27. NEOPLASTIC AND IMMUNE SINGLE CELL TRANSCRIPTOMICS DEFINE SUBGROUP-SPECIFIC INTRA-TUMORAL HETEROGENEITY OF CHILDHOOD MEDULLOBLASTOMA. Neuro-Oncology, 2021, 23, i11-i12.	1.2	0
27	RARE-18. NF1-MUTATED TUMORS EXHIBIT INCREASED SENSITIVITY TO AUTOPHAGY INHIBITION ALONE AND IN COMBINATION WITH MEK INHIBITION. Neuro-Oncology, 2021, 23, i44-i44.	1.2	0
28	EMBR-30. A NOVEL PLK1 INHIBITOR ONVANSERTIB EFFECTIVELY SENSITIZES GROUP 3 MEDULLOBLASTOMA TO RADIOTHERAPY. Neuro-Oncology, 2021, 23, i12-i12.	1.2	0
29	HGG-25. PRMT5 PROMOTES TUMOR GROWTH BY MAINTAINING STEMNESS OF PEDIATRIC HIGH-GRADE GLIOMA CELLS. Neuro-Oncology, 2021, 23, i22-i22.	1.2	0
30	HGG-29. VENETOCLAX SYNERGIZES WITH RADIATION THERAPY FOR THE TREATMENT OF DIPG. Neuro-Oncology, 2021, 23, i23-i23.	1.2	0
31	Subgroup and subtype-specific outcomes in adult medulloblastoma. Acta Neuropathologica, 2021, 142, 859-871.	7.7	34
32	Comprehensive molecular characterization of pediatric radiation-induced high-grade glioma. Nature Communications, 2021, 12, 5531.	12.8	31
33	Clinical phenotypes and prognostic features of embryonal tumours with multi-layered rosettes: a Rare Brain Tumor Registry study. The Lancet Child and Adolescent Health, 2021, 5, 800-813.	5.6	12
34	The long noncoding RNA <i>lnc-HLX-2-7</i> is oncogenic in Group 3 medulloblastomas. Neuro-Oncology, 2021, 23, 572-585.	1.2	23
35	Exportin 1 Inhibition Induces Nerve Growth Factor Receptor Expression to Inhibit the NF-κB Pathway in Preclinical Models of Pediatric High-Grade Glioma. Molecular Cancer Therapeutics, 2020, 19, 540-551.	4.1	14
36	Targeted fusion analysis can aid in the classification and treatment of pediatric glioma, ependymoma, and glioneuronal tumors. Pediatric Blood and Cancer, 2020, 67, e28028.	1.5	33

#	Article	IF	CITATIONS
37	BPTF regulates growth of adult and pediatric high-grade glioma through the MYC pathway. Oncogene, 2020, 39, 2305-2327.	5.9	31
38	Medulloblastoma has a global impact on health related quality of life: Findings from an international cohort. Cancer Medicine, 2020, 9, 447-459.	2.8	11
39	Clinical and molecular characterization of a multi-institutional cohort of pediatric spinal cord low-grade gliomas. Neuro-Oncology Advances, 2020, 2, vdaa103.	0.7	6
40	Senescence Induced by BMI1 Inhibition Is a Therapeutic Vulnerability in H3K27M-Mutant DIPG. Cell Reports, 2020, 33, 108286.	6.4	39
41	Super Elongation Complex as a Targetable Dependency in Diffuse Midline Glioma. Cell Reports, 2020, 31, 107485.	6.4	27
42	Preclinical and clinical investigation of intratumoral chemotherapy pharmacokinetics in DIPG using gemcitabine. Neuro-Oncology Advances, 2020, 2, vdaa021.	0.7	10
43	Proteasome inhibition as a therapeutic approach in atypical teratoid/rhabdoid tumors. Neuro-Oncology Advances, 2020, 2, vdaa051.	0.7	8
44	Single-Cell RNA Sequencing of Childhood Ependymoma Reveals Neoplastic Cell Subpopulations That Impact Molecular Classification and Etiology. Cell Reports, 2020, 32, 108023.	6.4	47
45	The effects of ephrinB2 signaling on proliferation and invasion in glioblastoma multiforme. Molecular Carcinogenesis, 2020, 59, 1064-1075.	2.7	9
46	Targeting MYC-driven replication stress in medulloblastoma with AZD1775 and gemcitabine. Journal of Neuro-Oncology, 2020, 147, 531-545.	2.9	10
47	MiRâ€1253 exerts tumorâ€suppressive effects in medulloblastoma via inhibition of CDK6 and CD276 (B7â€H3). Brain Pathology, 2020, 30, 732-745.	4.1	35
48	Increased HDAC Activity and c-MYC Expression Mediate Acquired Resistance to WEE1 Inhibition in Acute Leukemia. Frontiers in Oncology, 2020, 10, 296.	2.8	14
49	Advancing biology-based therapeutic approaches for atypical teratoid rhabdoid tumors. Neuro-Oncology, 2020, 22, 944-954.	1.2	25
50	Pattern of Relapse and Treatment Response in WNT-Activated Medulloblastoma. Cell Reports Medicine, 2020, 1, 100038.	6.5	24
51	MBRS-26. CDK7 MEDIATED TRANSCRIPTIONAL PROCESSIVITY OF DNA REPAIR NETWORKS REGULATES SENSITIVITY TO RADIATION IN MYC DRIVEN MEDULLOBLASTOMA. Neuro-Oncology, 2020, 22, iii403-iii403.	1.2	0
52	MBRS-46. CHARTING NEOPLASTIC AND IMMUNE CELL HETEROGENEITY IN HUMAN AND GEM MODELS OF MEDULLOBLASTOMA USING scRNAseq. Neuro-Oncology, 2020, 22, iii406-iii406.	1.2	0
53	ATRT-24. CELL SURFACE PROTEOME ANALYSIS OF ATRT IDENTIFIES TARGETS FOR IMMUNOTHERAPY. Neuro-Oncology, 2020, 22, iii280-iii280.	1.2	0
54	ATRT-20. CDK7 INHIBITION IN AT/RT. Neuro-Oncology, 2020, 22, iii279-iii280.	1.2	0

#	Article	IF	CITATIONS
55	EPEN-31. SINGLE-CELL RNAseq OF CHILDHOOD EPENDYMOMA REVEALS DISTINCT NEOPLASTIC CELL SUBPOPULATIONS THAT IMPACT ETIOLOGY, MOLECULAR CLASSIFICATION AND OUTCOME. Neuro-Oncology, 2020, 22, iii314-iii314.	1.2	0
56	IMG-17. RADIOMICS CHARACTERIZATION OF FOUR PEDIATRIC BRAIN TUMOR SUBTYPES IN PDX MOUSE MODELS. Neuro-Oncology, 2020, 22, iii358-iii358.	1.2	0
57	MBRS-65. FBXW7 ACTS A TUMOR SUPPRESSOR IN MYC-DRIVEN MEDULLOBLASTOMA BY CONTROLLING A FEED-FORWARD REGULATORY LOOP OF PLK1 AND MYC. Neuro-Oncology, 2020, 22, iii409-iii409.	1.2	0
58	ATRT-06. SMARCB1 LOSS DRIVEN NON-CANONICAL PRC1 ACTIVITY REGULATES DIFFERENTIATION IN ATYPICAL TERATOID RHABDOID TUMORS (ATRT). Neuro-Oncology, 2020, 22, iii276-iii277.	1.2	0
59	Role of MYC-miR-29-B7-H3 in Medulloblastoma Growth and Angiogenesis. Journal of Clinical Medicine, 2019, 8, 1158.	2.4	30
60	Establishment of patient-derived orthotopic xenograft model of 1q+ posterior fossa group A ependymoma. Neuro-Oncology, 2019, 21, 1540-1551.	1.2	11
61	MEDU-19. EZH2-REGULATED INHIBITION OF HIPK2 SUPPRESSES TREATMENT-INDUCED APOPTOSIS IN GROUP 3 MEDULLOBLASTOMA. Neuro-Oncology, 2019, 21, ii107-ii107.	1.2	0
62	MEDU-13. FUNCTIONAL CRISPR-CAS9 SCREEN IDENTIFIES DRUGGABLE DEPENDENCIES IN MYC-DRIVEN MEDULLOBLASTOMA. Neuro-Oncology, 2019, 21, ii105-ii106.	1.2	1
63	Effect of early-stage autophagy inhibition in BRAFV600E autophagy-dependent brain tumor cells. Cell Death and Disease, 2019, 10, 679.	6.3	24
64	DIPG-07. EPIGENOME SCREENING IDENTIFIES TRANSCRIPTIONAL ELONGATION AS THERAPEUTIC VULNERABILITY IN H3K27M-MUTANT DIFFUSE INTRINSIC PONTINE GLIOMA. Neuro-Oncology, 2019, 21, ii69-ii69.	1.2	0
65	DIPG-28. NTRK FUSIONS IN PEDIATRIC DIFFUSE INTRINSIC PONTINE GLIOMAS. Neuro-Oncology, 2019, 21, ii74-ii75.	1.2	0
66	EPEN-09. PRECLINICAL MODELS REVEAL SUBGROUP-STRATIFIED TARGETED THERAPY OPTIONS FOR CHILDHOOD SUPRATENTORIAL EPENDYMOMA. Neuro-Oncology, 2019, 21, ii79-ii79.	1.2	0
67	ATRT-05. PRC1 IS AN ESSENTIAL DEPENDENCY AND THERAPEUTIC TARGET IN SMARCB1 DEFICIENT ATYPICAL TERATOID RHABDOID TUMORS. Neuro-Oncology, 2019, 21, ii63-ii64.	1.2	0
68	scRNA-seq in medulloblastoma shows cellular heterogeneity and lineage expansion support resistance to SHH inhibitor therapy. Nature Communications, 2019, 10, 5829.	12.8	77
69	Recurrent noncoding U1ÂsnRNA mutations drive cryptic splicing in SHH medulloblastoma. Nature, 2019, 574, 707-711.	27.8	129
70	Inhibition of <i>MYC</i> attenuates tumor cell selfâ€renewal and promotes senescence in SMARCB1â€deficient Group 2 atypical teratoid rhabdoid tumors to suppress tumor growth <i>in vivo</i> . International Journal of Cancer, 2019, 144, 1983-1995.	5.1	43
71	Combined functional genomic and chemical screens identify SETD8 as a therapeutic target in MYC-driven medulloblastoma. JCI Insight, 2019, 4, .	5.0	20
72	Therapeutic targeting of immune checkpoints with small molecule inhibitors. American Journal of Translational Research (discontinued), 2019, 11, 529-541.	0.0	9

#	Article	IF	CITATIONS
73	Preclinical analysis of MTOR complex 1/2 inhibition in diffuse intrinsic pontine glioma. Oncology Reports, 2018, 39, 455-464.	2.6	19
74	EPEN-21. SINGLE CELL RNASEQ IDENTIFIES A PUTATIVE CANCER STEM CELL POPULATION IN POSTERIOR FOSSA EPN. Neuro-Oncology, 2018, 20, i77-i77.	1.2	0
75	DIPG-66. THE H3K27M MUTATION CAUSES WIDE-RANGING CHANGES MEDIATING DIPG TUMORIGENESIS. Neuro-Oncology, 2018, 20, i62-i62.	1.2	Ο
76	DIPG-77. INTRATUMORAL PHARMACOKINETICS OF CHEMOTHERAPY IN DIPG: XENOGRAFT AND INITIAL PHASE 0 CLINICAL TRIAL RESULTS. Neuro-Oncology, 2018, 20, i64-i65.	1.2	0
77	QOL-58. IMPROVEMENT IN VISUAL ACUITY OF PEDIATRIC PATIENTS WITH BRAIN TUMORS WITH BEVACIZUMAB. Neuro-Oncology, 2018, 20, i169-i169.	1.2	0
78	Exosomal microRNA profiling to identify hypoxia-related biomarkers in prostate cancer. Oncotarget, 2018, 9, 13894-13910.	1.8	47
79	ATRT-18. VALIDATION OF PROTEASOME INHIBITION AS A THERAPEUTIC TARGET IN ATYPICAL TERATOID/RHABDOID TUMORS. Neuro-Oncology, 2018, 20, i31-i31.	1.2	0
80	MBRS-23. EFFECT OF KNOCKDOWN OF KDM6A BY CRISPR/CAS9 EDITING IN MEDULLOBLASTOMA. Neuro-Oncology, 2018, 20, i133-i133.	1.2	0
81	EPEN-16. PATIENT-DERIVED PFA EPENDYMOMA XENOGRAFT MODEL. Neuro-Oncology, 2018, 20, i76-i76.	1.2	0
82	DIPG-10. THE ONCOGENIC ROLE OF THE SUPER ELONGATION COMPLEX IN H3K27M-MUTANT DIFFUSE MIDLINE GLIOMAS. Neuro-Oncology, 2018, 20, i50-i50.	1.2	0
83	HGG-45. COMPREHENSIVE MOLECULAR CHARACTERIZATION OF PEDIATRIC TREATMENT-INDUCED HIGH-GRADE GLIOMA: GERMLINE DNA REPAIR DEFECTS AS A POTENTIAL ETIOLOGY. Neuro-Oncology, 2018, 20, i98-i98.	1.2	0
84	PHRM-02. DELIVERY OF CHEMOTHERAPEUTICS TO PEDIATRIC BRAIN TUMORS USING CITRATE-CAPPED GOLD NANOPARTICLES. Neuro-Oncology, 2018, 20, i157-i157.	1.2	1
85	PDTM-41. SUPER ELONGATION COMPLEX-MEDIATED TRANSCRIPTIONAL DEPENDENCY IN H3K27M-MUTANT DIFFUSE MIDLINE GLIOMAS. Neuro-Oncology, 2018, 20, vi212-vi212.	1.2	0
86	EPEN-14. SUBGROUP-SPECIFIC THERAPY OPTIONS FOR CHILDHOOD SUPRATENTORIAL EPENDYMOMA. Neuro-Oncology, 2018, 20, i76-i76.	1.2	0
87	MBRS-22. EZH2 OVEREXPRESSION INCREASES THE ONCOGENIC CHARACTER OF CEREBELLAR PROGENITORS AND ISOGRAFTS IN MICE RESULT IN TUMORS RESEMBLING GROUP 3 MEDULLOBLASTOMA. Neuro-Oncology, 2018, 20, i132-i133.	1.2	0
88	ldentification of FDA-Approved Oncology Drugs with Selective Potency in High-Risk Childhood Ependymoma. Molecular Cancer Therapeutics, 2018, 17, 1984-1994.	4.1	19
89	EPEN-15. RETINOIDS AS POTENTIAL CHEMOTHERAPEUTIC OPTIONS FOR POSTERIOR FOSSA EPENDYMOMA OF CHILDHOOD. Neuro-Oncology, 2018, 20, i76-i76.	1.2	0
90	Tumor treating fields in pediatric high-grade glioma. Child's Nervous System, 2017, 33, 1043-1045.	1.1	12

#	Article	IF	CITATIONS
91	NF-κB upregulation through epigenetic silencing of LDOC1 drives tumor biology and specific immunophenotype in Group A ependymoma. Neuro-Oncology, 2017, 19, 1350-1360.	1.2	32
92	<i>p16</i> Loss and E2F/cell cycle deregulation in infant posterior fossa ependymoma. Pediatric Blood and Cancer, 2017, 64, e26656.	1.5	7
93	Intertumoral Heterogeneity within Medulloblastoma Subgroups. Cancer Cell, 2017, 31, 737-754.e6.	16.8	836
94	Combined EphB2 receptor knockdown with radiation decreases cell viability and invasion in medulloblastoma. Cancer Cell International, 2017, 17, 41.	4.1	16
95	A Small-Molecule Inhibitor of WEE1, AZD1775, Synergizes with Olaparib by Impairing Homologous Recombination and Enhancing DNA Damage and Apoptosis in Acute Leukemia. Molecular Cancer Therapeutics, 2017, 16, 2058-2068.	4.1	61
96	Characterization of 2 Novel Ependymoma Cell Lines With Chromosome 1q Gain Derived From Posterior Fossa Tumors of Childhood. Journal of Neuropathology and Experimental Neurology, 2017, 76, 595-604.	1.7	19
97	Vincristine and Vinblastine: Is checking bilirubin mandatory in children with Brain Tumors?. Pediatric Blood and Cancer, 2017, 64, e26329.	1.5	1
98	Targeting Polo-like kinase 1 in SMARCB1 deleted atypical teratoid rhabdoid tumor. Oncotarget, 2017, 8, 97290-97303.	1.8	15
99	Autophagy inhibition overcomes multiple mechanisms of resistance to BRAF inhibition in brain tumors. ELife, 2017, 6, .	6.0	128
100	AT-07PLK1 AS A THERAPEUTIC TARGET IN ATRT. Neuro-Oncology, 2016, 18, iii2.2-iii2.	1.2	0
101	HG-78SYNTHETIC LETHAL EPIGENETIC INTERACTIONS IN K27M MUTATED DIPG. Neuro-Oncology, 2016, 18, iii66.3-iii66.	1.2	1
102	MB-71THE ROLE OF WEE1 IN Myc-DRIVEN MEDULLOBLASTOMA. Neuro-Oncology, 2016, 18, iii113.2-iii113.	1.2	2
103	MPS1 kinase as a potential therapeutic target in medulloblastoma. Oncology Reports, 2016, 36, 2633-2640.	2.6	23
104	Polo-like KinaseÂ1 as a potential therapeutic target in Diffuse Intrinsic Pontine Glioma. BMC Cancer, 2016, 16, 647.	2.6	31
105	Prognostic value of medulloblastoma extent of resection after accounting for molecular subgroup: a retrospective integrated clinical and molecular analysis. Lancet Oncology, The, 2016, 17, 484-495.	10.7	274
106	A WEE1 Inhibitor Analog of AZD1775 Maintains Synergy with Cisplatin and Demonstrates Reduced Single-Agent Cytotoxicity in Medulloblastoma Cells. ACS Chemical Biology, 2016, 11, 921-930.	3.4	42
107	Checkpoint kinase 1 expression is an adverse prognostic marker and therapeutic target in MYC-driven medulloblastoma. Oncotarget, 2016, 7, 53881-53894.	1.8	17
108	EP-04 * ACTIVATION OF THE IL6/STAT3 PATHWAY IN CHILDHOOD EPENDYMOMA IS ASSOCIATED WITH A PRO-INFLAMMATORY TUMOR MICROENVIRONMENT AND A POOR PROGNOSIS. Neuro-Oncology, 2015, 17, iii6-iii6.	1.2	0

#	Article	IF	CITATIONS
109	Interleukin-6/STAT3 Pathway Signaling Drives an Inflammatory Phenotype in Group A Ependymoma. Cancer Immunology Research, 2015, 3, 1165-1174.	3.4	61
110	Inhibition of BRD4 attenuates tumor cell self-renewal and suppresses stem cell signaling in MYC driven medulloblastoma. Oncotarget, 2014, 5, 2355-2371.	1.8	103
111	Fractionated stereotactic radiosurgery for recurrent ependymoma in children. Journal of Neuro-Oncology, 2014, 116, 107-111.	2.9	45
112	Preclinical highâ€dose acetaminophen with <i>N</i> â€acetylcysteine rescue enhances the efficacy of cisplatin chemotherapy in atypical teratoid rhabdoid tumors. Pediatric Blood and Cancer, 2014, 61, 120-127.	1.5	12
113	Cytogenetic Prognostication Within Medulloblastoma Subgroups. Journal of Clinical Oncology, 2014, 32, 886-896.	1.6	263
114	Integrated genomic analysis identifies the mitotic checkpoint kinase WEE1 as a novel therapeutic target in medulloblastoma. Molecular Cancer, 2014, 13, 72.	19.2	62
115	Epigenetic Regulation of Von Willebrand Factor Gene Expression May Contribute to Von Willebrand Disease Severity. Blood, 2014, 124, 470-470.	1.4	1
116	B7-H3, a potential therapeutic target, is expressed in diffuse intrinsic pontine glioma. Journal of Neuro-Oncology, 2013, 111, 257-264.	2.9	101
117	Aberrant patterns of H3K4 and H3K27 histone lysine methylation occur across subgroups in medulloblastoma. Acta Neuropathologica, 2013, 125, 373-384.	7.7	169
118	Pediatric rhabdoid tumors of kidney and brain show many differences in gene expression but share dysregulation of cell cycle and epigenetic effector genes. Pediatric Blood and Cancer, 2013, 60, 1095-1102.	1.5	40
119	MicroRNA 218 Acts as a Tumor Suppressor by Targeting Multiple Cancer Phenotype-associated Genes in Medulloblastoma. Journal of Biological Chemistry, 2013, 288, 1918-1928.	3.4	100
120	Inhibition of EZH2 suppresses self-renewal and induces radiation sensitivity in atypical rhabdoid teratoid tumor cells. Neuro-Oncology, 2013, 15, 149-160.	1.2	115
121	Inhibition of cyclin-dependent kinase 6 suppresses cell proliferation and enhances radiation sensitivity in medulloblastoma cells. Journal of Neuro-Oncology, 2013, 111, 113-121.	2.9	59
122	TERT promoter mutations are highly recurrent in SHH subgroup medulloblastoma. Acta Neuropathologica, 2013, 126, 917-929.	7.7	146
123	Subgroup-specific structural variation across 1,000 medulloblastoma genomes. Nature, 2012, 488, 49-56.	27.8	761
124	Histone deacetylase inhibition decreases proliferation and potentiates the effect of ionizing radiation in atypical teratoid/rhabdoid tumor cells. Neuro-Oncology, 2012, 14, 175-183.	1.2	51
125	Targeting the enhancer of zeste homologue 2 in medulloblastoma. International Journal of Cancer, 2012, 131, 1800-1809.	5.1	71
126	Targeting Aurora Kinase A enhances radiation sensitivity of atypical teratoid rhabdoid tumor cells. Journal of Neuro-Oncology, 2012, 107, 517-526.	2.9	56

#	Article	IF	CITATIONS
127	Polo-like kinase 1 (PLK1) inhibition suppresses cell growth and enhances radiation sensitivity in medulloblastoma cells. BMC Cancer, 2012, 12, 80.	2.6	69
128	Survey of MicroRNA expression in pediatric brain tumors. Pediatric Blood and Cancer, 2011, 56, 211-216.	1.5	89
129	High expression of BMP pathway genes distinguishes a subset of atypical teratoid/rhabdoid tumors associated with shorter survival. Neuro-Oncology, 2011, 13, 1296-1307.	1.2	52
130	Inhibition of Aurora Kinase A enhances chemosensitivity of medulloblastoma cell lines. Pediatric Blood and Cancer, 2010, 55, 35-41.	1.5	39
131	MicroRNA 128a Increases Intracellular ROS Level by Targeting Bmi-1 and Inhibits Medulloblastoma Cancer Cell Growth by Promoting Senescence. PLoS ONE, 2010, 5, e10748.	2.5	158
132	Aurora kinase A as a rational target for therapy in glioblastoma. Journal of Neurosurgery: Pediatrics, 2010, 6, 98-105.	1.3	39
133	Regulation of cyclin dependent kinase 6 by microRNA 124 in medulloblastoma. Journal of Neuro-Oncology, 2008, 90, 1-7.	2.9	230
134	Dickkopf-1 is an epigenetically silenced candidate tumor suppressor gene in medulloblastoma1. Neuro-Oncology, 2007, 9, 135-144.	1.2	64
135	Genome-Wide Analysis of Epigenetic Silencing Identifies BEX1 and BEX2 as Candidate Tumor Suppressor Genes in Malignant Glioma. Cancer Research, 2006, 66, 6665-6674.	0.9	135
136	Successful Unrelated Umbilical Cord Blood Transplantation for Shwachman-Diamond Syndrome Blood, 2004, 104, 5179-5179.	1.4	0
137	Aberrant T-Cell Antigen Receptor-Mediated Responses in Autoimmune Lymphoproliferative Syndrome. Clinical Immunology, 2002, 104, 31-39.	3.2	15
138	Activation-Induced Expression of Human Programmed Death-1 Gene in T-Lymphocytes. Experimental Cell Research, 1997, 232, 25-28.	2.6	133
139	The human PD-1 gene: complete cDNA, genomic organization, and developmentally regulated expression in B cell progenitors. Gene, 1997, 197, 177-187.	2.2	99