Catherine Belzung

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/524233/publications.pdf Version: 2024-02-01

		19657	10158
214	21,301	61	140
papers	citations	h-index	g-index
224 all docs	224 docs citations	224 times ranked	18811 citing authors

#	Article	IF	CITATIONS
1	Adult hippocampal neurogenesis shapes adaptation and improves stress response: a mechanistic and integrative perspective. Molecular Psychiatry, 2022, 27, 403-421.	7.9	35
2	Child abuse associates with increased recruitment of perineuronal nets in the ventromedial prefrontal cortex: a possible implication of oligodendrocyte progenitor cells. Molecular Psychiatry, 2022, 27, 1552-1561.	7.9	20
3	Decrease in ultrasound Brain Tissue Pulsations as a potential surrogate marker of response to antidepressant. Journal of Psychiatric Research, 2022, 146, 186-191.	3.1	5
4	Benzodiazepine use and neuroimaging markers of Alzheimer's disease in nondemented older individuals: an MRI and 18F Florbetapir PET study in the MEMENTO cohort. Neuropsychopharmacology, 2022, 47, 1114-1120.	5.4	8
5	miR-323a regulates ERBB4 and is involved in depression. Molecular Psychiatry, 2021, 26, 4191-4204.	7.9	47
6	Neuroinflammation and depression: A review. European Journal of Neuroscience, 2021, 53, 151-171.	2.6	489
7	Cholesterol homeostasis: Researching a dialogue between the brain and peripheral tissues. Pharmacological Research, 2021, 163, 105215.	7.1	50
8	Adult neurogenesis augmentation attenuates anhedonia and HPA axis dysregulation in a mouse model of chronic stress and depression. Psychoneuroendocrinology, 2021, 124, 105097.	2.7	32
9	Increasing Adult Hippocampal Neurogenesis Promotes Resilience in a Mouse Model of Depression. Cells, 2021, 10, 972.	4.1	19
10	Brain immune cells characterization in UCMS exposed P2X7 knock-out mouse. Brain, Behavior, and Immunity, 2021, 94, 159-174.	4.1	17
11	CRF-R1 Antagonist Treatment Exacerbates Circadian Corticosterone Secretion under Chronic Stress, but Preserves HPA Feedback Sensitivity. Pharmaceutics, 2021, 13, 2114.	4.5	1
12	Withdrawal notice to: Adult hippocampal neurogenesis and antidepressants effects [COPHAR, 50 2020, 17–24]. Current Opinion in Pharmacology, 2020, 50, R1.	3.5	0
13	Left amygdala volume and brain tissue pulsatility are associated with neuroticism: an MRI and ultrasound study. Brain Imaging and Behavior, 2020, 15, 1499-1507.	2.1	1
14	A systematic review of ultrasound imaging and therapy in mental disorders. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2020, 101, 109919.	4.8	6
15	P.214 Is adult hippocampal neurogenesis sufficient for antidepressant effects: results from a mouse model of depression. European Neuropsychopharmacology, 2020, 31, S29.	0.7	0
16	Do antidepressants promote neurogenesis in adult hippocampus? A systematic review and meta-analysis on naive rodents. , 2020, 210, 107515.		34
17	When classical music relaxes the brain: An experimental study using Ultrasound Brain Tissue Pulsatility Imaging. International Journal of Psychophysiology, 2020, 150, 29-36.	1.0	10
18	The neuroscience of sadness: A multidisciplinary synthesis and collaborative review. Neuroscience and Biobehavioral Reviews, 2020, 111, 199-228.	6.1	46

#	Article	IF	CITATIONS
19	Adult hippocampal neurogenesis and antidepressants effects. Current Opinion in Pharmacology, 2020, 50, 88-95.	3.5	43
20	Mechanistic vs Statistical Extrapolation in Preclinical Research in Psychiatry: Challenging the Received View. Boston Studies in the Philosophy and History of Science, 2020, , 79-100.	0.9	1
21	Sustained corticosterone rise in the prefrontal cortex is a key factor for chronic stress-induced working memory deficits in mice. Neurobiology of Stress, 2019, 10, 100161.	4.0	20
22	Benzodiazepine use and brain amyloid load in nondemented older individuals: a florbetapir PET study in the Multidomain Alzheimer Preventive Trial cohort. Neurobiology of Aging, 2019, 84, 61-69.	3.1	12
23	Animal models of major depression: drawbacks and challenges. Journal of Neural Transmission, 2019, 126, 1383-1408.	2.8	252
24	Prefrontal cortex rTMS reverses behavioral impairments and differentially activates c-Fos in a mouse model of post-traumatic stressÂdisorder. Brain Stimulation, 2019, 12, 87-95.	1.6	17
25	ATP-activated P2X7 receptor in the pathophysiology of mood disorders and as an emerging target for the development of novel antidepressant therapeutics. Neuroscience and Biobehavioral Reviews, 2018, 87, 192-205.	6.1	34
26	Hedonic Assessment of Odors: A Comparison of Two Sensory Scales for Use with Alzheimer's Disease Patients and Elderly Individuals. Journal of Alzheimer's Disease, 2018, 61, 929-938.	2.6	3
27	Repeated diazepam administration reversed working memory impairments and glucocorticoid alterations in the prefrontal cortex after short but not long alcohol-withdrawal periods. Cognitive, Affective and Behavioral Neuroscience, 2018, 18, 665-679.	2.0	6
28	Cerebral blood flow velocity positively correlates with brain volumes in long-term remitted depression. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2018, 81, 243-249.	4.8	7
29	A P2X7 receptor antagonist reverses behavioural alterations, microglial activation and neuroendocrine dysregulation in an unpredictable chronic mild stress (UCMS) model of depression in mice. Psychoneuroendocrinology, 2018, 97, 120-130.	2.7	63
30	Individual responses of rodents in modelling of affective disorders and in their treatment: prospective review. Acta Neuropsychiatrica, 2018, 30, 323-333.	2.1	10
31	Alcohol withdrawal induces long″asting spatial working memory impairments: relationship with changes in corticosterone response in the prefrontal cortex. Addiction Biology, 2017, 22, 898-910.	2.6	21
32	Stress and psychiatric disorders: from categorical to dimensional approaches. Current Opinion in Behavioral Sciences, 2017, 14, 72-77.	3.9	24
33	Cingulate Overexpression of Mitogen-Activated Protein Kinase Phosphatase-1 as a Key Factor for Depression. Biological Psychiatry, 2017, 82, 370-379.	1.3	53
34	Neuronal Activity, TGFβ-Signaling and Unpredictable Chronic Stress Modulate Transcription of Gadd45 Family Members and DNA Methylation in the Hippocampus. Cerebral Cortex, 2017, 27, 4166-4181.	2.9	46
35	Fluoxetine induces paradoxical effects in C57BL6/J mice: comparison with BALB/c mice. Behavioural Pharmacology, 2017, 28, 466-476.	1.7	23
36	Increasing adult hippocampal neurogenesis in mice after exposure to unpredictable chronic mild stress may counteract some of the effects of stress. Neuropharmacology, 2017, 126, 179-189.	4.1	55

#	Article	IF	CITATIONS
37	May the use of different background strains â€~strain' the stress-related phenotype of GR +/â^ mice?. Behavioural Brain Research, 2017, 335, 71-79.	2.2	3
38	Adult hippocampal neurogenesis: Is it the alpha and omega of antidepressant action?. Biochemical Pharmacology, 2017, 141, 86-99.	4.4	55
39	Translational identification of transcriptional signatures of major depression and antidepressant response. European Neuropsychopharmacology, 2017, 27, S586-S587.	0.7	0
40	Translational Identification of Transcriptional Signatures of Major Depression and Antidepressant Response. Frontiers in Molecular Neuroscience, 2017, 10, 248.	2.9	29
41	Acute Stress and Anxiety. , 2016, , 207-228.		2
42	Modeling Affective Symptoms of Schizophrenia. Handbook of Behavioral Neuroscience, 2016, 23, 85-102.	0.7	2
43	Chronic Treatment with the IDO1 Inhibitor 1-Methyl-D-Tryptophan Minimizes the Behavioural and Biochemical Abnormalities Induced by Unpredictable Chronic Mild Stress in Mice - Comparison with Fluoxetine. PLoS ONE, 2016, 11, e0164337.	2.5	26
44	Antidepressant treatment differentially affects the phenotype of high and low stress reactive mice. Neuropharmacology, 2016, 110, 37-47.	4.1	5
45	Decline of hippocampal stress reactivity and neuronal ensemble coherence in a mouse model of depression. Psychoneuroendocrinology, 2016, 67, 113-123.	2.7	22
46	Identity matters to individuals: Group assessment cannot be reduced to collective performance. Behavioral and Brain Sciences, 2016, 39, e139.	0.7	0
47	Rescuing prefrontal cAMP-CREB pathway reverses working memory deficits during withdrawal from prolonged alcohol exposure. Brain Structure and Function, 2016, 221, 865-877.	2.3	39
48	Prenatal Exposure to Methylphenidate Affects the Dopamine System and the Reactivity to Natural Reward in Adulthood in Rats. International Journal of Neuropsychopharmacology, 2015, 18, .	2.1	7
49	The BDNF Val66Met polymorphism is associated with escitalopram response in depressed patients. Psychopharmacology, 2015, 232, 575-581.	3.1	22
50	Long-lasting memory abnormalities following exposure to the mouse defense test battery: An animal model of PTSD. Physiology and Behavior, 2015, 146, 67-72.	2.1	3
51	An odor identification approach based on event-related pupil dilation and gaze focus. International Journal of Psychophysiology, 2015, 96, 201-209.	1.0	9
52	Taste identification used as a potential discriminative test among depression and Alzheimer× ³ s disease in elderly: A pilot study. Psychiatry Research, 2015, 228, 228-232.	3.3	13
53	Chronic mild stress and antidepressant treatment alter 5-HT1A receptor expression by modifying DNA methylation of a conserved Sp4 site. Neurobiology of Disease, 2015, 82, 332-341.	4.4	53
54	Treatment-resistant depression: are animal models of depression fit for purpose?. Psychopharmacology, 2015, 232, 3473-3495.	3.1	116

#	Article	IF	CITATIONS
55	The CRF1 receptor antagonist SSR125543 prevents stress-induced long-lasting sleep disturbances in a mouse model of PTSD: Comparison with paroxetine and d-cycloserine. Behavioural Brain Research, 2015, 279, 41-46.	2.2	12
56	Depression: from psychopathology to pathophysiology. Current Opinion in Neurobiology, 2015, 30, 24-30.	4.2	142
57	Brain organic cation transporter 2 controls response and vulnerability to stress and GSK3Î ² signaling. Molecular Psychiatry, 2015, 20, 889-900.	7.9	54
58	Perceptive Biases in Major Depressive Episode. PLoS ONE, 2014, 9, e86832.	2.5	27
59	Long-term odor recognition memory in unipolar major depression and Alzheimer׳s disease. Psychiatry Research, 2014, 220, 861-866.	3.3	25
60	Resistance to antidepressant drugs. Behavioural Pharmacology, 2014, 25, 352-371.	1.7	29
61	Optogenetics to study the circuits of fear- and depression-like behaviors: A critical analysis. Pharmacology Biochemistry and Behavior, 2014, 122, 144-157.	2.9	53
62	Innovative Drugs to Treat Depression: Did Animal Models Fail to Be Predictive or Did Clinical Trials Fail to Detect Effects?. Neuropsychopharmacology, 2014, 39, 1041-1051.	5.4	90
63	The temporal dynamic of emotional emergence. Phenomenology and the Cognitive Sciences, 2014, 13, 557-578.	1.8	34
64	Dysregulation of the hypothalamus-pituitary-adrenal axis predicts some aspects of the behavioral response to chronic fluoxetine: association with hippocampal cell proliferation. Frontiers in Behavioral Neuroscience, 2014, 8, 340.	2.0	25
65	Open-Field Test. , 2014, , 1-5.		3
66	The CRF1 receptor antagonist SSR125543 prevents stress-induced cognitive deficit associated with hippocampal dysfunction: Comparison with paroxetine and d-cycloserine. Psychopharmacology, 2013, 228, 97-107.	3.1	19
67	Neurogenesis along the septo-temporal axis of the hippocampus: Are depression and the action of antidepressants region-specific?. Neuroscience, 2013, 252, 234-252.	2.3	182
68	Region-dependent and stage-specific effects of stress, environmental enrichment, and antidepressant treatment on hippocampal neurogenesis. Hippocampus, 2013, 23, 797-811.	1.9	80
69	Stressing new neurons into depression?. Molecular Psychiatry, 2013, 18, 396-397.	7.9	26
70	The neurobiology of depression and antidepressant action. Neuroscience and Biobehavioral Reviews, 2013, 37, 2331-2371.	6.1	386
71	Maternal Exposure to Lipopolysaccharide Leads to Transient Motor Dysfunction in Neonatal Rats. Developmental Neuroscience, 2013, 35, 172-181.	2.0	54
72	Models of Depression: Unpredictable Chronic Mild Stress in Mice. Current Protocols in Pharmacology, 2013, 61, Unit 5.65.	4.0	160

#	Article	IF	CITATIONS
73	Hippocampal neurogenesis: a biomarker for depression or antidepressant effects? Methodological considerations and perspectives for future research. Cell and Tissue Research, 2013, 354, 203-219.	2.9	67
74	Deep brain stimulation in treatment-resistant depression in mice: Comparison with the CRF1 antagonist, SSR125543. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2013, 40, 213-220.	4.8	38
75	Mechanisms of antidepressant resistance. Frontiers in Pharmacology, 2013, 4, 146.	3.5	89
76	S.27.04 Role of orexin in the unpredictable chronic mild stress model of depression in mice. European Neuropsychopharmacology, 2012, 22, S146.	0.7	0
77	Differential environmental regulation of neurogenesis along the septo-temporal axis of the hippocampus. Neuropharmacology, 2012, 63, 374-384.	4.1	142
78	Is unpredictable chronic mild stress (UCMS) a reliable model to study depression-induced neuroinflammation?. Behavioural Brain Research, 2012, 231, 130-137.	2.2	136
79	Gabra5-gene haplotype block associated with behavioral properties of the full agonist benzodiazepine chlordiazepoxide. Behavioural Brain Research, 2012, 233, 474-482.	2.2	4
80	Neurogenesis-Independent Antidepressant-Like Effects on Behavior and Stress Axis Response of a Dual Orexin Receptor Antagonist in a Rodent Model of Depression. Neuropsychopharmacology, 2012, 37, 2210-2221.	5.4	120
81	Novel Insights into Depression and Antidepressants: A Synergy Between Synaptogenesis and Neurogenesis?. Current Topics in Behavioral Neurosciences, 2012, 15, 243-291.	1.7	40
82	State and Trait Olfactory Markers of Major Depression. PLoS ONE, 2012, 7, e46938.	2.5	76
83	Fluoxetine Effect on Aortic Nitric Oxide-Dependent Vasorelaxation in the Unpredictable Chronic Mild Stress Model of Depression in Mice. Psychosomatic Medicine, 2012, 74, 63-72.	2.0	37
84	Does reduction of fearfulness tend to reduce pessimistic-like judgment in lambs?. Applied Animal Behaviour Science, 2012, 139, 233-241.	1.9	46
85	The CRF1 receptor antagonist SSR125543 attenuates long-term cognitive deficit induced by acute inescapable stress in mice, independently from the hypothalamic pituitary adrenal axis. Pharmacology Biochemistry and Behavior, 2012, 102, 415-422.	2.9	21
86	Early and Late-Onset Effect of Chronic Stress on Vascular Function in Mice: A Possible Model of the Impact of Depression on Vascular Disease in Aging. American Journal of Geriatric Psychiatry, 2011, 19, 335-346.	1.2	25
87	Altered aortic vascular reactivity in the unpredictable chronic mild stress model of depression in mice. Physiology and Behavior, 2011, 103, 540-546.	2.1	34
88	Acute inescapable stress exposure induces long-term sleep disturbances and avoidance behavior: A mouse model of post-traumatic stress disorder (PTSD). Behavioural Brain Research, 2011, 221, 149-154.	2.2	53
89	Activation of orexin neurons in dorsomedial/perifornical hypothalamus and antidepressant reversal in a rodent model of depression. Neuropharmacology, 2011, 61, 336-346.	4.1	104
90	Effects of nitric oxide synthase inhibitors 1â€(2â€trifluoromethylphenyl) – imidazole (TRIM) and 7â€nitroindazole (7â€NI) on learning and memory in mice. Fundamental and Clinical Pharmacology, 2011, 25, 368-377.	1.9	27

#	Article	IF	CITATIONS
91	Antidepressants recruit new neurons to improve stress response regulation. Molecular Psychiatry, 2011, 16, 1177-1188.	7.9	406
92	Evidence for a key role of the peripheral kynurenine pathway in the modulation of anxiety- and depression-like behaviours in mice: Focus on individual differences. Pharmacology Biochemistry and Behavior, 2011, 98, 161-168.	2.9	56
93	Criteria of validity for animal models of psychiatric disorders: focus on anxiety disorders and depression. Biology of Mood & Anxiety Disorders, 2011, 1, 9.	4.7	301
94	The design of new antidepressants. Behavioural Pharmacology, 2010, 21, 677-689.	1.7	23
95	Central auditory processing in aging: The dichotic listening paradigm. Journal of Nutrition, Health and Aging, 2010, 14, 751-756.	3.3	21
96	Prenatal MDMA exposure delays postnatal development in the rat: A preliminary study. Neurotoxicology and Teratology, 2010, 32, 425-431.	2.4	10
97	Preserved subcortical volumes and cortical thickness in women with sexual abuse-related PTSD. Psychiatry Research - Neuroimaging, 2010, 183, 181-186.	1.8	61
98	Open questions in current models of antidepressant action. British Journal of Pharmacology, 2010, 159, 1187-1200.	5.4	96
99	Association between Repeated Unpredictable Chronic Mild Stress (UCMS) Procedures with a High Fat Diet: A Model of Fluoxetine Resistance in Mice. PLoS ONE, 2010, 5, e10404.	2.5	193
100	Latent variables and the network perspective. Behavioral and Brain Sciences, 2010, 33, 150-151.	0.7	35
101	Behavior and serotonergic disorders in rats exposed prenatally to valproate: A model for autism. Neuroscience Letters, 2010, 470, 55-59.	2.1	136
102	Peripheral and cerebral metabolic abnormalities of the tryptophan–kynurenine pathway in a murine model of major depression. Behavioural Brain Research, 2010, 210, 84-91.	2.2	95
103	Olfactory anhedonia and negative olfactory alliesthesia in depressed patients. Psychiatry Research, 2010, 176, 190-196.	3.3	64
104	Neurogenic Basis of Antidepressant Action: Recent Advances. Modern Problems of Pharmacopsychiatry, 2010, , 224-242.	2.5	1
105	A Molecular Signature of Depression in the Amygdala. American Journal of Psychiatry, 2009, 166, 1011-1024.	7.2	177
106	Corticolimbic Transcriptome Changes are State-Dependent and Region-Specific in a Rodent Model of Depression and of Antidepressant Reversal. Neuropsychopharmacology, 2009, 34, 1363-1380.	5.4	173
107	Effects of neuronal and inducible NOS inhibitor 1-[2-(trifluoromethyl) phenyl] imidazole (TRIM) in unpredictable chronic mild stress procedure in mice. Pharmacology Biochemistry and Behavior, 2009, 92, 82-87.	2.9	61
108	Free versus forced exposure to an elevated plus-maze: evidence for new behavioral interpretations during test and retest. Psychopharmacology, 2009, 203, 131-141.	3.1	42

#	Article	IF	CITATIONS
109	Deficit in BDNF does not increase vulnerability to stress but dampens antidepressant-like effects in the unpredictable chronic mild stress. Behavioural Brain Research, 2009, 202, 245-251.	2.2	99
110	P.2.b.003 Endothelial dysfunction in a rodent model of depression may underlie atherosclerosis formation. European Neuropsychopharmacology, 2009, 19, S392.	0.7	0
111	Pharmacological Alterations of Anxious Behaviour in Mice Depending on Both Strain and the Behavioural Situation. PLoS ONE, 2009, 4, e7745.	2.5	21
112	Endothelial dysfunction: A potential therapeutic target for geriatric depression and brain amyloid deposition in Alzheimer's disease?. Current Opinion in Investigational Drugs, 2009, 10, 46-55.	2.3	23
113	Effects of 5,7-dihydroxytryptamine lesion of the dorsal raphe nucleus on the antidepressant-like action of tramadol in the unpredictable chronic mild stress in mice. Psychopharmacology, 2008, 200, 497-507.	3.1	31
114	Large-scale estimates of cellular origins of mRNAs: Enhancing the yield of transcriptome analyses. Journal of Neuroscience Methods, 2008, 167, 198-206.	2.5	13
115	Olfaction: A potential cognitive marker of psychiatric disorders. Neuroscience and Biobehavioral Reviews, 2008, 32, 1315-1325.	6.1	202
116	Involvement of vasopressin in affective disorders. European Journal of Pharmacology, 2008, 583, 340-349.	3.5	67
117	Multifaceted strain-specific effects in a mouse model of depression and of antidepressant reversal. Psychoneuroendocrinology, 2008, 33, 1357-1368.	2.7	98
118	Drug-Dependent Requirement of Hippocampal Neurogenesis in a Model of Depression and of Antidepressant Reversal. Biological Psychiatry, 2008, 64, 293-301.	1.3	482
119	Prucalopride and donepezil act synergistically to reverse scopolamine-induced memory deficit in C57Bl/6j mice. Behavioural Brain Research, 2008, 187, 455-461.	2.2	61
120	Mouse strain differences in the unpredictable chronic mild stress: a four-antidepressant survey. Behavioural Brain Research, 2008, 193, 140-143.	2.2	123
121	n-3 Polyunsaturated fatty acid supplementation reverses stress-induced modifications on brain monoamine levels in mice. Journal of Lipid Research, 2008, 49, 340-348.	4.2	109
122	Chapter 4.6 Genetic factors underlying anxiety-behavior: A meta-analysis of rodent studies involving targeted mutations of neurotransmission genes. Handbook of Behavioral Neuroscience, 2008, 17, 325-354.	0.7	1
123	Antidepressant-like effect of tramadol in the unpredictable chronic mild stress procedure: possible involvement of the noradrenergic system. Behavioural Pharmacology, 2007, 18, 623-631.	1.7	61
124	Functional implications of decreases in neurogenesis following chronic mild stress in mice. Neuroscience, 2007, 150, 251-259.	2.3	133
125	PTSD psychiatric patients exhibit a deficit in remembering. Memory, 2007, 15, 145-153.	1.7	18
126	Anxiety from a Phylogenetic Perspective: Is there a Qualitative Difference between Human and Animal Anxiety?. Neural Plasticity, 2007, 2007, 1-17.	2.2	49

#	Article	IF	CITATIONS
127	Lack of serotonin1B receptor expression leads to age-related motor dysfunction, early onset of brain molecular aging and reduced longevity. Molecular Psychiatry, 2007, 12, 1042-1056.	7.9	51
128	Upregulated sirtuin 5 gene expression in frontal cortex of serotonin 1b receptor knock out mice. Molecular Psychiatry, 2007, 12, 975-975.	7.9	2
129	Effects of unpredictable chronic mild stress on anxiety and depression-like behavior in mice. Behavioural Brain Research, 2006, 175, 43-50.	2.2	375
130	Long-term impaired memory following predatory stress in mice. Physiology and Behavior, 2006, 87, 45-50.	2.1	32
131	Neuropeptides in Psychiatric Diseases: An Overview with a Particular Focus on Depression and Anxiety Disorders. CNS and Neurological Disorders - Drug Targets, 2006, 5, 135-145.	1.4	46
132	Trauma-related deficits in working memory. Cognitive Neuropsychiatry, 2006, 11, 33-46.	1.3	34
133	A74 HIPPOCAMPAL NEUROGENESIS CONTRIBUTES TO THE EFFICACY OF IMIPRAMINE AND CRF1 ANTAGONIST (SSR125543A) FOLLOWING A CHRONIC UNPREDICTABLE STRESS PROCEDURE IN MICE. Behavioural Pharmacology, 2005, 16, S46.	1.7	0
134	A63 EFFECTS OF DESIPRAMINE AND TRAMADOL IN A CHRONIC MILD STRESS MODEL IN MICE ARE ALTERED BY YOHIMBINE BUT NOT BY PINDOLOL. Behavioural Pharmacology, 2005, 16, S43.	1.7	0
135	A68 DENSITY AND AFFINITY OF 5-HT TRANSPORTER IN A MOUSE MODEL OF DEPRESSION. Behavioural Pharmacology, 2005, 16, S44.	1.7	0
136	Early life genetic, epigenetic and environmental factors shaping emotionality in rodents. Neuroscience and Biobehavioral Reviews, 2005, 29, 1335-1346.	6.1	266
137	Effects of desipramine and tramadol in a chronic mild stress model in mice are altered by yohimbine but not by pindolol. European Journal of Pharmacology, 2005, 514, 165-174.	3.5	154
138	Prenatal 3,4-methylenedioxymethamphetamine (ecstasy) exposure induces long-term alterations in the dopaminergic and serotonergic functions in the rat. Developmental Brain Research, 2005, 154, 165-176.	1.7	25
139	Correlations between behaviours in the elevated plus-maze and sensitivity to unpredictable subchronic mild stress: evidence from inbred strains of mice. Behavioural Brain Research, 2005, 156, 153-162.	2.2	122
140	Rodent models for autism: A critical review. Drug Discovery Today: Disease Models, 2005, 2, 93-101.	1.2	28
141	Ethological validation and the assessment of anxiety-like behaviours: methodological comparison of classical analyses and structural approaches. Behavioural Processes, 2004, 67, 195-206.	1.1	35
142	Strain differences in sucrose preference and in the consequences of unpredictable chronic mild stress. Behavioural Brain Research, 2004, 155, 135-146.	2.2	343
143	Susceptibility to subchronic unpredictable stress is related to individual reactivity to threat stimuli in mice. Behavioural Brain Research, 2004, 155, 291-299.	2.2	49
144	Emotional reactivity in mice may not be inherited but influenced by parents. Physiology and Behavior, 2004, 80, 465-474.	2.1	70

#	Article	IF	CITATIONS
145	Behaviour in the elevated plus-maze predicts coping after subchronic mild stress in mice. Physiology and Behavior, 2004, 81, 417-426.	2.1	126
146	Impaired memory following predatory stress in mice is improved by fluoxetine. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2004, 28, 123-128.	4.8	24
147	Agonistic behavior and unpredictable chronic mild stress in mice. Behavior Genetics, 2003, 33, 513-519.	2.1	123
148	The open field as a paradigm to measure the effects of drugs on anxiety-like behaviors: a review. European Journal of Pharmacology, 2003, 463, 3-33.	3.5	2,382
149	Myelination and motor coordination are increased in transferrin transgenic mice. Journal of Neuroscience Research, 2003, 72, 587-594.	2.9	57
150	Requirement of Hippocampal Neurogenesis for the Behavioral Effects of Antidepressants. Science, 2003, 301, 805-809.	12.6	3,912
151	Effects of the selective nonpeptide corticotropin-releasing factor receptor 1 antagonist antalarmin in the chronic mild stress model of depression in mice. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2003, 27, 625-631.	4.8	202
152	Genetic basis of anxiety-like behaviour: a critical review. Brain Research Bulletin, 2002, 57, 57-71.	3.0	142
153	Emotional behaviour as the result of stochastic interactions. A process crucial for cognition. Behavioural Processes, 2002, 60, 115-132.	1.1	6
154	Measuring normal and pathological anxiety-like behaviour in mice: a review. Behavioural Brain Research, 2001, 125, 141-149.	2.2	753
155	Behavioral and neurochemical changes following predatory stress in mice. Neuropharmacology, 2001, 41, 400-408.	4.1	125
156	Environmental enrichment in BALB/c mice. Physiology and Behavior, 2001, 74, 313-320.	2.1	165
157	Emotional reactivity in mice, a case of nongenetic heredity?. Physiology and Behavior, 2001, 74, 355-362.	2.1	58
158	Models of complexity: The example of emotions. Behavioral and Brain Sciences, 2001, 24, 1053-1054.	0.7	2
159	An investigation of the mechanisms responsible for acute fluoxetine-induced anxiogenic-like effects in mice. Behavioural Pharmacology, 2001, 12, 151-162.	1.7	61
160	The genetic basis of the pharmacological effects of anxiolytics: a review based on rodent models. Behavioural Pharmacology, 2001, 12, 451-460.	1.7	62
161	The effects of the lurcher mutation on object localization, T-maze discrimination, and radial arm maze tasks. Behavior Genetics, 2001, 31, 151-155.	2.1	22
162	Rodent models of anxiety-like behaviors: are they predictive for compounds acting via non-benzodiazepine mechanisms?. Current Opinion in Investigational Drugs, 2001, 2, 1108-11.	2.3	18

#	Article	IF	CITATIONS
163	β-CCT, a selective BZ-ω1 receptor antagonist, blocks the anti-anxiety but not the amnesic action of chlordiazepoxide in mice. Behavioural Pharmacology, 2000, 11, 125-131.	1.7	32
164	Absence of Cocaine-induced Place Conditioning in Serotonin 1B Receptor Knock-out Mice. Pharmacology Biochemistry and Behavior, 2000, 66, 221-225.	2.9	41
165	Differences in Drug-Induced Place Conditioning Between BALB/c and C57Bl/6 Mice. Pharmacology Biochemistry and Behavior, 2000, 65, 419-423.	2.9	79
166	Anxiolytic-Like Effects of Meprobamate. Pharmacology Biochemistry and Behavior, 2000, 65, 465-474.	2.9	6
167	Naloxone potentiates anxiolytic-like actions of diazepam, pentobarbital and meprobamate but not those of Ro19-8022 in the rat. European Journal of Pharmacology, 2000, 394, 289-294.	3.5	10
168	Flumazenil induces benzodiazepine partial agonist-like effects in BALB/c but not C57BL/6 mice. Psychopharmacology, 2000, 148, 24-32.	3.1	56
169	Differences in anxiety-related behaviours and in sensitivity to diazepam in inbred and outbred strains of mice. Psychopharmacology, 2000, 148, 164-170.	3.1	379
170	Chapter 4.11 Measuring rodent exploratory behavior. Handbook of Behavioral Neuroscience, 1999, , 738-749.	0.0	39
171	Decreased GABAA-receptor clustering results in enhanced anxiety and a bias for threat cues. Nature Neuroscience, 1999, 2, 833-839.	14.8	521
172	Rearing environmental enrichment in two inbred strains of mice: 1. Effects on emotional reactivity. Behavior Genetics, 1999, 29, 41-46.	2.1	175
173	Blockade of anxiolytic-like actions of chlordiazepoxide by naloxone in the elevated plus-maze: Comparisons between Swiss, C57BL/6, and BALB/c mice. Cognitive, Affective and Behavioral Neuroscience, 1999, 27, 105-113.	1.3	15
174	Interactions Between Dopamine and GABA in the Control of Ambulatory Activity and Neophobia in the Mouse. Pharmacology Biochemistry and Behavior, 1998, 59, 239-247.	2.9	7
175	Toxicity, Mutagenicity, and Behavioral Effects of β-CIT, a Ligand for Dopamine Transporter Exploration by SPECT. Nuclear Medicine and Biology, 1998, 25, 405-409.	0.6	4
176	The role of subtypes of the opioid receptor in the anxiolytic action of chlordiazepoxide. Neuropharmacology, 1998, 37, 223-232.	4.1	39
177	Modulation of mice anxiety in response to cat odor as a consequence of predators diet. Physiology and Behavior, 1998, 65, 247-254.	2.1	90
178	Dietary Fish Oil Affects Monoaminergic Neurotransmission and Behavior in Rats. Journal of Nutrition, 1998, 128, 2512-2519.	2.9	231
179	Naloxone potentiates the anxiolytic but not the amnestic action of chlordiazepoxide in C57BL/6 mice. Behavioural Pharmacology, 1998, 9, 691-698.	1.7	28
180	α-Linolenic Acid Deficiency Modifies Distractibility but Not Anxiety and Locomotion in Rats during Aging. Journal of Nutrition, 1998, 128, 1537-1542.	2.9	28

#	Article	IF	CITATIONS
181	NALOXONE POTENTIATES THE EFFECTS OF SUB-EFFECTIVE DOSES OF ANTI-ANXIETY AGENTS IN RATS AND MICE. Behavioural Pharmacology, 1998, 9, S14.	1.7	Ο
182	Further pharmacological validation of the BALB/c neophobia in the free exploratory paradigm as an animal model of trait anxiety. Behavioural Pharmacology, 1997, 8, 541-548.	1.7	101
183	Different pattern of interaction of three anti-anxiety compounds (chlordiazepoxide, diazepam and) Tj ETQq1 1 ().784314 1.7	rgBT /Overlo <mark>ck</mark>
184	Cholecystokinin receptors mediate the development of a preference for the mother by newly born lambs Behavioral Neuroscience, 1997, 111, 1375-1382.	1.2	20
185	Naloxone potentiates the effects of subeffective doses of anxiolytic agents in mice. European Journal of Pharmacology, 1997, 323, 133-136.	3.5	25
186	Naloxone blocks anxiolytic-like effects of benzodiazepines in Swiss but not in Balb/c mice. Psychopharmacology, 1997, 132, 195-201.	3.1	24
187	A rat model of distractibility: effects of drugs modifying dopaminergic, noradrenergic and GABA ergic neurotransmission. Journal of Neural Transmission, 1997, 104, 11-29.	2.8	17
188	5-HT1A and 5-HT2A ligands with anxiolytic and antipanic-like properties. Bioorganic and Medicinal Chemistry Letters, 1997, 7, 2579-2584.	2.2	12
189	N-(3-lodoprop-2E-enyl)-2beta-carbomethoxy-3beta-(3',4'-dichloro phenyl)nortropane (beta-CDIT), a tropane derivative: pharmacological characterization as a specific ligand for the dopamine transporter in the rodent brain. Journal of Pharmacology and Experimental Therapeutics, 1997, 282, 467-74.	2.5	9
190	Cholecystokinin receptors mediate the development of a preference for the mother by newly born lambs Behavioral Neuroscience, 1997, 111, 1375-1382.	1.2	6
191	Cholecystokinin A receptor antagonist inhibits feed memory in Japanese quail. Physiology and Behavior, 1996, 60, 575-579.	2.1	4
192	Interactions between dopamine and GABA in the control of ambulatory activity. Journal of Neural Transmission, 1996, 103, 925-934.	2.8	28
193	Behavioral characterization of mice packing the 5-HT1B receptor. NIDA Research Monograph, 1996, 161, 39-57.	0.1	7
194	5-HT1B receptor knock out — behavioral consequences. Behavioural Brain Research, 1995, 73, 305-312.	2.2	179
195	Link between emotional memory and anxiety states: A study by principal component analysis. Physiology and Behavior, 1995, 58, 111-118.	2.1	128
196	Effects of previous familiarization on novelty reactions in mice (Mus musculus). Behavioural Processes, 1995, 34, 197-212.	1.1	11
197	PD135158, a CCK-B antagonist, reduces "state,―but not "trait―anxiety in mice. Pharmacology Biochemistry and Behavior, 1994, 49, 433-436.	2.9	38
198	Drug effects in a radical maze designed for dissociation of cues used by mice. Pharmacology Biochemistry and Behavior, 1994, 48, 23-29.	2.9	14

#	Article	IF	CITATIONS
199	Comparison of different behavioral test situations used in psychopharmacology for measurement of anxiety. Physiology and Behavior, 1994, 56, 623-628.	2.1	260
200	The free-exploratory paradigm. Behavioural Pharmacology, 1993, 4, 637???644.	1.7	193
201	The free-exploratory paradigm: an effective method for measuring neophobic behaviour in mice and testing potential neophobia-reducing drugs. Behavioural Pharmacology, 1993, 4, 637-644.	1.7	73
202	Hippocampal mossy fibres: implication in novelty reactions or in anxiety behaviours?. Behavioural Brain Research, 1992, 51, 149-155.	2.2	50
203	Behavioral effects of RO 41-9067: A novel D2 dopamine receptor agonist. Drug Development Research, 1992, 27, 425-433.	2.9	6
204	LY 171555-induced hyperdefensiveness in the mouse does not implicate benzodiazepine receptors. Psychopharmacology, 1991, 103, 449-454.	3.1	12
205	Anxiogenic effects of a benzodiazepine receptor partial inverse agonist, RO 19-4603, in a light/dark choice situation. Pharmacology Biochemistry and Behavior, 1990, 36, 593-596.	2.9	18
206	Behavioural effects of the benzodiazepine receptor partial agonist RO 16-6028 in mice. Psychopharmacology, 1989, 97, 388-391.	3.1	27
207	Behavioural Validation of a Light/Dark Choice Procedure for Testing Anti-Anxiety Agents. Behavioural Processes, 1989, 18, 119-132.	1.1	89
208	Benzodiazepine antagonist RO 15-1788 partly reverses some anxiolytic effects of ethanol in the mouse. Psychopharmacology, 1988, 95, 516-9.	3.1	24
209	Does RO 15-4513 reverse the anxiolytic effects of ethanol by its intrinsic properties?. Pharmacology Biochemistry and Behavior, 1988, 30, 867-870.	2.9	25
210	The benzodiazepine receptor inverse agonists β-CCM and RO 15–3505 both reverse the anxiolytic effects of ethanol in mice. Life Sciences, 1988, 42, 1765-1772.	4.3	39
211	Interaction of RO 15-4513 and ethanol on the behaviour of mice: antagonistic or additive effects?. Psychopharmacology, 1988, 94, 392-6.	3.1	52
212	Anxiogenic effects of methyl-β-carboline-3-carboxylate in a light/dark choice situation. Pharmacology Biochemistry and Behavior, 1987, 28, 29-33.	2.9	154
213	Social rank and responses to feeding competition in rhesus monkeys. Behavioural Processes, 1986, 12, 307-316.	1.1	61
214	Amino Acid Transmitter Systems. , 0, , 915-927.		1