
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5241636/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Supramolecular Mechanosensitive Potassium Channel Formed by Fluorinated Amphiphilic Cyclophane. Journal of the American Chemical Society, 2022, 144, 11802-11809.	13.7	17
2	Imidazoliniumâ€based Multiblock Amphiphile as Transmembrane Anion Transporter. Chemistry - an Asian Journal, 2021, 16, 147-157.	3.3	9
3	Chemical Molecular Machines and Robots. , 2021, , 1-13.		Ο
4	Synthetic Ion Channel Formed by Multiblock Amphiphile with Anisotropic Dual-Stimuli-Responsiveness. Journal of the American Chemical Society, 2021, 143, 1348-1355.	13.7	23
5	Characterization of a novel type of carbonic anhydrase that acts without metal cofactors. BMC Biology, 2021, 19, 105.	3.8	37
6	Supramolecular Transmembrane Ion Channels Formed by Multiblock Amphiphiles. Accounts of Chemical Research, 2021, 54, 3700-3709.	15.6	23
7	Calcium-induced reversible assembly of phosphorylated amphiphile within lipid bilayer membranes. Chemical Communications, 2021, 57, 4106-4109.	4.1	4
8	Properties of Imidazolinium-containing Multiblock Amphiphile in Lipid Bilayer Membranes. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2021, 34, 161-165.	0.3	0
9	Introduction: Molecular Motors. Chemical Reviews, 2020, 120, 1-4.	47.7	53
10	Thermo-driven self-assembly of a PEG-containing amphiphile in a bilayer membrane. RSC Advances, 2020, 10, 25758-25762.	3.6	3
11	Reversible formation of multiple stimuli-responsive polymeric materials through processing control of trifunctional amphiphilic molecules. Chemical Communications, 2020, 56, 7881-7884.	4.1	0
12	A synthetic ion channel with anisotropic ligand response. Nature Communications, 2020, 11, 2924.	12.8	36
13	Aromatic Fluorination of Multiblock Amphiphile Enhances Its Incorporation into Lipid Bilayer Membranes. ChemistryOpen, 2020, 9, 301-303.	1.9	8
14	Session 2SDA—Nonequilibrium energetics of biological molecular machines. Biophysical Reviews, 2020, 12, 273-274.	3.2	2
15	New Modified Deoxythymine with Dibranched Tetraethylene Glycol Stabilizes G-Quadruplex Structures. Molecules, 2020, 25, 705.	3.8	5
16	Development of an Engineered Photoactive Yellow Protein as a Crossâ€Linking Junction for Construction of Photoresponsive Proteinâ€Polymer Conjugates. ChemPhotoChem, 2019, 3, 356-360.	3.0	1
17	Heatâ€Triggered Crystallization of Liquid Crystalline Macrocycles Allowing for Conductance Switching through Hysteretic Thermal Phase Transitions. Chemistry - an Asian Journal, 2019, 14, 141-148.	3.3	4
18	Localization of transmembrane multiblock amphiphilic molecules in phase-separated vesicles. Faraday Discussions, 2018, 209, 315-328.	3.2	1

#	Article	IF	CITATIONS
19	Multifarious Polymorphism of a Multiblock Amphiphilic Macrocycle Bearing Thermally Responsive Polyether Segment. ACS Omega, 2018, 3, 414-418.	3.5	5
20	Enzymatically cleavable traceless biotin tags for protein PEGylation and purification. Chemical Communications, 2018, 54, 1913-1916.	4.1	4
21	Thermal and optical properties of multiblock macrocycles with hysteretic polymorphic transition. Materials Chemistry Frontiers, 2018, 2, 969-974.	5.9	8
22	Applications to water transport systems: general discussion. Faraday Discussions, 2018, 209, 389-414.	3.2	4
23	Monodisperse engineered PEGs for bio-related applications. Polymer Journal, 2018, 50, 689-697.	2.7	17
24	Mechano-Sensitive Synthetic Ion Channels. Journal of the American Chemical Society, 2017, 139, 18016-18023.	13.7	65
25	Thermally-induced lateral assembly of a PEG-containing amphiphile triggering vesicle budding. Chemical Communications, 2017, 53, 11662-11665.	4.1	6
26	Newly characterized interaction stabilizes DNA structure: oligoethylene glycols stabilize G-quadruplexes CH–݀ interactions. Nucleic Acids Research, 2017, 45, 7021-7030.	14.5	23
27	Gâ€Quadruplexes with Tetra(ethylene glycol)â€Modified Deoxythymidines are Resistant to Nucleases and Inhibit HIVâ€1 Reverse Transcriptase. ChemBioChem, 2016, 17, 1399-1402.	2.6	10
28	Multigram chromatography-free synthesis of octa(ethylene glycol) p-toluenesulfonate. Organic Chemistry Frontiers, 2016, 3, 1524-1534.	4.5	18
29	Synthesis and Thermal Responses of Polygonal Poly(ethylene glycol) Analogues. Chemistry - an Asian Journal, 2016, 11, 1028-1035.	3.3	5
30	Contrasting Topological Effect of PEG-Containing Amphiphiles to Natural Lipids on Stability of Vesicles. Langmuir, 2016, 32, 4546-4553.	3.5	7
31	Chromatography-free synthesis of monodisperse oligo(ethylene glycol) mono-p-toluenesulfonates and quantitative analysis of oligomer purity. Polymer Chemistry, 2016, 7, 2389-2394.	3.9	29
32	Bioinspired multi-block molecules. Chemical Communications, 2016, 52, 2667-2678.	4.1	13
33	Development of Stimuli-Responsive Multi-Block Amphiphiles. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2015, 28, 579-582.	0.3	2
34	Protein stabilization by an amphiphilic short monodisperse oligo(ethylene glycol). Chemical Communications, 2015, 51, 8457-8460.	4.1	22
35	Light-triggered vesicle formation: important factors for generation of vesicles and possible applications. Pure and Applied Chemistry, 2014, 86, 1259-1267.	1.9	5
36	Grafting synthetic transmembrane units to the engineered low-toxicity α-hemolysin to restore its hemolytic activity. Molecular BioSystems, 2014, 10, 3199-3206.	2.9	1

#	Article	IF	CITATIONS
37	Micrometer-Size Vesicle Formation Triggered by UV Light. Langmuir, 2014, 30, 7289-7295.	3.5	21
38	Reversible Ion Transportation Switch by a Ligand-Gated Synthetic Supramolecular Ion Channel. Journal of the American Chemical Society, 2014, 136, 15584-15595.	13.7	65
39	Thermally Driven Polymorphic Transition Prompting a Nakedâ€Eyeâ€Detectable Bending and Straightening Motion of Single Crystals. Angewandte Chemie - International Edition, 2014, 53, 7173-7178.	13.8	64
40	Thermodriven Micrometerâ€Scale Aqueousâ€Phase Separation of Amphiphilic Oligoethylene Glycol Analogues. Chemistry - an Asian Journal, 2014, 9, 2778-2788.	3.3	14
41	Single-Cell E.Âcoli Response to an Instantaneously Applied Chemotactic Signal. Biophysical Journal, 2014, 107, 730-739.	0.5	28
42	Thermal-aggregation suppression of proteins by a structured PEG analogue: Importance of denaturation temperature for effective aggregation suppression. Biochemical Engineering Journal, 2014, 86, 41-48.	3.6	10
43	Development of Self-Assembling Alternating Amphiphilic Compounds. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2014, 27, 557-560.	0.3	0
44	Thermoresponsive Self-assembly and Conformational Changes of Amphiphilic Monodisperse Short Poly(ethylene glycol)s in Water. Chemistry Letters, 2014, 43, 1055-1057.	1.3	10
45	Transetherification on Polyols by Intra- and Intermolecular Nucleophilic Substitutions. PLoS ONE, 2014, 9, e91912.	2.5	1
46	A Structured Monodisperse PEG for the Effective Suppression of Protein Aggregation. Angewandte Chemie - International Edition, 2013, 52, 2430-2434.	13.8	66
47	Biomolecular robotics for chemomechanically driven guest delivery fuelled by intracellular ATP. Nature Chemistry, 2013, 5, 613-620.	13.6	195
48	Development and Functionalization of Structural Mimics of Multipass Transmembrane Proteins. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2013, 71, 1045-1050.	0.1	0
49	Amplification of Light-induced Molecular-Shape Change by Supramolecular Machines. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2012, 25, 655-658.	0.3	2
50	Development of photoresponsive supramolecular machines inspired by biological molecular systems. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2012, 13, 136-147.	11.6	29
51	Thermally resistive phosphorescent molecular assembly in the channels of mesoporous silica nanocomposites. , 2012, , .		4
52	Ion Permeation by a Folded Multiblock Amphiphilic Oligomer Achieved by Hierarchical Construction of Self-Assembled Nanopores. Journal of the American Chemical Society, 2012, 134, 19788-19794.	13.7	54
53	Coumarin-derived transformable fluorescent sensor for Zn2+. Chemical Communications, 2012, 48, 4764.	4.1	147
54	Application of photoactive yellow protein as a photoresponsive module for controlling hemolytic activity of staphylococcal α-hemolysin. Chemical Communications, 2012, 48, 4737.	4.1	19

#	Article	IF	CITATIONS
55	Metalâ€lon Permeation in Congested Nanochannels: The Exposure Effect of Ag ⁺ lons on the Phosphorescent Properties of a Gold(I)–Pyrazolate Complex that is Confined in the Nanoscopic Channels of Mesoporous Silica. Chemistry - an Asian Journal, 2012, 7, 2068-2072.	3.3	29
56	Mimicking multipass transmembrane proteins: synthesis, assembly and folding of alternating amphiphilic multiblock molecules in liposomal membranes. Chemical Communications, 2011, 47, 194-196.	4.1	34
57	Controlling Volume Shrinkage in Soft Lithography through Heat-Induced Cross-Linking of Patterned Nanofibers. Journal of the American Chemical Society, 2011, 133, 2840-2843.	13.7	39
58	Adhesion Effects of a Guanidinium Ion Appended Dendritic "Molecular Glue―on the ATPâ€Driven Sliding Motion of Actomyosin. Angewandte Chemie - International Edition, 2010, 49, 3030-3033.	13.8	37
59	Selfâ€Repair of a Oneâ€Dimensional Molecular Assembly in Mesoporous Silica by a Nanoscopic Template Effect. Angewandte Chemie - International Edition, 2010, 49, 4241-4245.	13.8	51
60	High-water-content mouldable hydrogels by mixing clay and a dendritic molecular binder. Nature, 2010, 463, 339-343.	27.8	1,446
61	Development of Bioinspired Molecular Machines and their Functions. Hyomen Kagaku, 2010, 31, 283-289.	0.0	0
62	Image analysis of Â/Â-tubulin rings in two-dimensional crystalline arrays of periodic mesoporous nanostructures. Journal of Biochemistry, 2010, 147, 555-563.	1.7	6
63	Heating effect of a one-dimensional molecular assembly on self-repairing capability in the nanoscopic channels of mesoporous silica. , 2010, , .		4
64	Shape-Directed Assembly of a "Macromolecular Barb―into Nanofibers: Stereospecific Cyclopolymerization of Isopropylidene Diallylmalonate. Journal of the American Chemical Society, 2010, 132, 3292-3294.	13.7	44
65	Oligo(4-aminopiperidine-4-carboxylic acid): An Unusual Basic Oligopeptide with an Acid-Induced Helical Conformation. Journal of the American Chemical Society, 2010, 132, 13176-13178.	13.7	31
66	A Tubular Biocontainer: Metal Ion-Induced 1D Assembly of a Molecularly Engineered Chaperonin. Journal of the American Chemical Society, 2009, 131, 7556-7557.	13.7	89
67	Molecular Glues Carrying Multiple Guanidinium Ion Pendants via an Oligoether Spacer: Stabilization of Microtubules against Depolymerization. Journal of the American Chemical Society, 2009, 131, 1626-1627.	13.7	77
68	Template sol–gel synthesis of mesostructured silica composites using metal complexes bearing amphiphilic side chains: immobilization of a polymeric Pt complex formed by a metallophilic interaction. Faraday Discussions, 2009, 143, 335.	3.2	14
69	Development of Supramolecular Machines Allowing for Mechanical Communication between Molecules. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2009, 67, 1044-1052.	0.1	1
70	Toward autonomously operating molecular machines driven by transition-metal catalyst. Molecular BioSystems, 2008, 4, 512.	2.9	15
71	Toward Long-Distance Mechanical Communication: Studies on a Ternary Complex Interconnected by a Bridging Rotary Module. Journal of the American Chemical Society, 2008, 130, 6725-6727.	13.7	116
72	Chiral ferrocenes as novel rotary modules for molecular machines. Organic and Biomolecular Chemistry, 2008, 6, 1871.	2.8	63

#	Article	IF	CITATIONS
73	Crystallographic and Chiroptical Studies on Tetraarylferrocenes for Use as Chiral Rotary Modules for Molecular Machines. Chemistry - A European Journal, 2007, 13, 1724-1730.	3.3	22
74	Catalysis of a Peptidic Micellar Assembly Covalently Immobilized within Mesoporous Silica Channels: Importance of Amphiphilic Spatial Design. Chemistry - A European Journal, 2007, 13, 1731-1736.	3.3	49
75	Reversible operation of chiral molecular scissors by redox and UV light. Chemical Communications, 2007, , 1441.	4.1	64
76	A Self-Locking Molecule Operative with a Photoresponsive Key. Journal of the American Chemical Society, 2006, 128, 11600-11605.	13.7	67
77	Semibiological Molecular Machine with an Implemented "AND―Logic Gate for Regulation of Protein Folding. Journal of the American Chemical Society, 2006, 128, 3764-3769.	13.7	107
78	Mechanical twisting of a guest by a photoresponsive host. Nature, 2006, 440, 512-515.	27.8	634
79	Hermaphroditic Chirality of aD2-Symmetric Saddle-Shaped Porphyrin in Multicomponent Spontaneous Optical Resolution: Inclusion Cocrystals with Double-Helical Porphyrin Arrays. Angewandte Chemie - International Edition, 2006, 45, 3786-3790.	13.8	18
80	From Electron Pump to Proton Channel. Science, 2006, 313, 51-52.	12.6	8
81	Synthesis, absolute configuration, and application of enantiopuretrans-1-aminobenz[f]indan-2-ol. Chirality, 2005, 17, 108-112.	2.6	16
82	Rational Design of CH/? Interaction Sites in a Basic Resolving Agent ChemInform, 2005, 36, no.	0.0	0
83	Toward Intelligent Molecular Machines: Directed Motions of Biological and Artificial Molecules and Assemblies. ChemInform, 2005, 36, no.	0.0	0
84	Design of Resolving Agents Based on Crystal Engineering. ChemInform, 2005, 36, no.	0.0	1
85	Design of Resolving Agents Based on Crystal Engineering. Synlett, 2005, 2005, 0732-0743.	1.8	31
86	Toward Intelligent Molecular Machines:  Directed Motions of Biological and Artificial Molecules and Assemblies. Chemical Reviews, 2005, 105, 1377-1400.	47.7	808
87	Dynamic Functional Materials Utilizing Chaperonins. Kobunshi, 2005, 54, 82-82.	0.0	0
88	Rational Design of CH/Ï€ Interaction Sites in a Basic Resolving Agent. Journal of Organic Chemistry, 2004, 69, 7436-7441.	3.2	29
89	Light-Driven Openâ^'Close Motion of Chiral Molecular Scissors. Journal of the American Chemical Society, 2003, 125, 5612-5613.	13.7	328
90	Synthesis and Structure of Macrocyclic Bis(hydroxynaphthoic amide)s Connected by an Achiral or Chiral Diamine ChemInform, 2003, 34, no.	0.0	0

#	Article	IF	CITATIONS
91	Chiral discrimination of 2-arylalkanoic acids by (1S,2S)-1-aminoindan-2-ol and (1S,2S)-2-aminoindan-1-ol: Correlation of the relative configuration of the amino and hydroxy groups with the pattern of a supramolecular hydrogen-bond network in the less-soluble diastereomeric salt. Chirality, 2003, 15, 564-570.	2.6	12
92	Chaperonin-mediated stabilization and ATP-triggered release of semiconductor nanoparticles. Nature, 2003, 423, 628-632.	27.8	232
93	Synthesis and Structure of Macrocyclic Bis(hydroxynaphthoic amide)s Connected by an Achiral or Chiral Diamine. Journal of Organic Chemistry, 2003, 68, 5812-5818.	3.2	15
94	Chiral Discrimination during Crystallization. Topics in Stereochemistry, 2003, , 207-265.	2.0	22
95	Enantiopuretrans- andcis-3-Aminoindan-1-ols: Preparation and Application as Novel Basic Resolving Agents. Chemistry Letters, 2002, 31, 266-267.	1.3	13
96	Regio- and Stereoselective Synthesis of atrans-4-[60]Fullerenobisacetic Acid Derivative by a Tether-Directed Biscyclopropanation: A Diacid Component Applicable for the Synthesis of Regio- and Stereo-regular [60]Fullerene Pearl-Necklace Polyamides. Chemistry Letters, 2002, 31, 728-729.	1.3	4
97	Regio―and Stereoselective Synthesis of a transâ€4â€[60]Fullerenobisacetic Acid Derivative by a Tetherâ€Directed Biscyclopropanation: A Diacid Component Applicable for the Synthesis of Regio―and Stereoâ€Regular [60]Fullerene Pearlâ€Necklace Polyamides ChemInform, 2002, 33, 86-86.	0.0	0
98	TETHER-LINKED [60]FULLERENE-DONOR DYADS. Fullerenes, Nanotubes, and Carbon Nanostructures, 2001, 9, 467-475.	0.6	5
99	Chemical Modification of Amide-Based Catenanes and Rotaxanes II. Synthesis oftertiaryAmine [2]Catenanes and [2] Rotaxanes viaN-Methylation Followed by Borane Reduction ofsecondaryAmide [2]Catenanes and [2]Rotaxanes and Mobility of Their Components. Bulletin of the Chemical Society of Japan. 2001. 74. 149-155.	3.2	24
100	Azidoacetamide, a neutral small organic azide. Acta Crystallographica Section E: Structure Reports Online, 2001, 57, 06-08.	0.2	4
101	Synthesis of methano[60]fullerene derivatives: the fluoride ion-mediated reaction of [60]fullerene with silylated nucleophiles. Tetrahedron Letters, 2001, 42, 5065-5067.	1.4	13
102	Synthesis and transformation of a novel methano[60]fullerene having a formyl group. Tetrahedron Letters, 2001, 42, 5069-5071.	1.4	15
103	Probability of spontaneously resolvable conglomerates for racemic acid/racemic amine salts predicted on the basis of the results of diastereomeric resolutions. Tetrahedron: Asymmetry, 2001, 12, 2927-2930.	1.8	29
104	Cyclic Dimers of Metalloporphyrins as Tunable Hosts for Fullerenes: A Remarkable Effect of Rhodium(III). Angewandte Chemie - International Edition, 2001, 40, 1857-1861.	13.8	169
105	Cyclic Dimers of Metalloporphyrins as Tunable Hosts for Fullerenes: A Remarkable Effect of Rhodium(III). Angewandte Chemie - International Edition, 2001, 40, 1857-1861.	13.8	4
106	Effect of a Substituent on an Aromatic Group in Diastereomeric Resolution. Tetrahedron, 2000, 56, 6651-6655.	1.9	42
107	A high-performance, tailor-made resolving agent: remarkable enhancement of resolution ability by introducing a naphthyl group into the fundamental skeleton. Perkin Transactions II RSC, 2000, , 1339-1348.	1.1	52
108	Chiral discrimination of 2-arylalkanoic acids by (1S,2R)-1-aminoindan-2-ol through the formation of a consistent columnar supramolecular hydrogen-bond network â€. Perkin Transactions II RSC, 2000, , 111-119.	1.1	33

#	Article	IF	CITATIONS
109	Molecular Design of a Novel Dendrimer Porphyrin for Supramolecular Fullerene/Dendrimer Hybridization. Macromolecules, 2000, 33, 9182-9184.	4.8	49
110	A novel reaction of [60]fullerene. A formal [2+2] cycloaddition with aryloxy- and alkoxyketenes. Tetrahedron Letters, 1999, 40, 899-902.	1.4	13
111	A Cyclic Dimer of Metalloporphyrin Forms a Highly Stable Inclusion Complex with C60. Journal of the American Chemical Society, 1999, 121, 9477-9478.	13.7	314
112	Synthesis and Structure of [2]CatenatedtertiaryOctamide and Octamine. Chemistry Letters, 1999, 28, 915-916.	1.3	10
113	Synthesis and properties of polyamides with [60]fullerene in the main chain. Journal of Polymer Science Part A, 1998, 36, 3139-3146.	2.3	12
114	(2-Naphthyl)glycolic acid: a tailored resolving agent for p-substituted 1-arylethylamines. Tetrahedron: Asymmetry, 1998, 9, 2219-2222.	1.8	17
115	Systematic study of chiral discrimination upon crystallisation. Part 2.1 Chiral discrimination of 2-arylalkanoic acids by (1R,2S )-2-amino-1,2-diphenylethanol. Journal of the Chemical Society Perkin Transactions II, 1998, , 1767-1776.	0.9	28
116	Novel Copolyamides Containing [60]Fullerene in the Main Chain. Chemistry Letters, 1997, 26, 1037-1038.	1.3	18
117	Crystal Structures of the Salts of Chiral Primary Amines with Achiral Carboxylic Acids:  Recognition of the Commonly-Occurring Supramolecular Assemblies of Hydrogen-Bond Networks and Their Role in the Formation of Conglomerates. Journal of the American Chemical Society, 1996, 118, 3441-3449.	13.7	196
118	Photoisomerization of ammonium α,β-unsaturated carboxylates in the solid state: effect of the hydrogen-bond network on the reactivity. Journal of the Chemical Society Perkin Transactions II, 1996, , 247-253.	0.9	44
119	Chiral discrimination upon crystallisation of the diastereomeric salts of 1-arylethylamines with mandelic acid or p-methoxymandelic acid: interpretation of the resolution efficiencies on the basis of the crystal structures. Journal of the Chemical Society Perkin Transactions II, 1996, , 2615.	0.9	55
120	PhotochemicalEZ-Isomerization ofl̂ \pm ,l̂ ² -Unsaturated Amides and Thioamides in the Solid State. Bulletin of the Chemical Society of Japan, 1996, 69, 779-784.	3.2	8
121	Formation of Ketones from Alkyl Nitrites in the Solid State. Chemistry Letters, 1996, 25, 217-218.	1.3	4
122	Molecular-level chiral discrimination and induction. Journal of Chemical Sciences, 1996, 108, 555-573.	1.5	4
123	Design of resolving reagents: p-substituted mandelic acids as resolving reagents for 1-arylalkylamines. Tetrahedron: Asymmetry, 1996, 7, 1539-1542.	1.8	55
124	EZ-Isomerization of α,β-punsaturated Acid Derivatives in the Solid State. Molecular Crystals and Liquid Crystals, 1996, 276, 141-151.	0.3	7
125	Role of Hydrogen-Bond Network in the Formation of a Conglomerate Nihon Kessho Gakkaishi, 1996, 38, 414-420.	0.0	1
126	Photoreactive molecular complex of 2,5-distyrylpyrazine and ethyl 4-[2-(2-pyrazinyl)ethenyl]cinnamate. Formation of perfectly ordered polymer composite by crystalline-state photopolymerization. Journal of the American Chemical Society, 1993, 115, 3820-3821.	13.7	10

#	Article	IF	CITATIONS
127	Optical Resolution and Absolute Configuration ofantiHead-to-Head Umbelliferone Dimer. Bulletin of the Chemical Society of Japan, 1993, 66, 900-905.	3.2	5
128	Formation of a Topochemically Photoreactive Mixed Crystal by Grinding and Its Mechanistic Interpretation. Bulletin of the Chemical Society of Japan, 1993, 66, 1204-1210.	3.2	5
129	Optical Resolution of 1-(3-Methoxyphenyl)ethylamine with Enantiomerically Pure Mandelic Acid, and the Crystal Structure of Less-Soluble Diastereomeric Salt. Bulletin of the Chemical Society of Japan, 1993, 66, 3414-3418.	3.2	23
130	Template Sol-Gel Synthesis of Phosphorescent Mesoporous Silica Film Nanocomposites Using an Amphiphilic Gold (I) Pyrazolate Complex. Advanced Materials Research, 0, 364, 55-59.	0.3	1