Barth D Grant

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5240593/publications.pdf

Version: 2024-02-01

80 papers 7,354 citations

45 h-index 74163 75 g-index

87 all docs

87 docs citations

87 times ranked

9756 citing authors

#	Article	IF	CITATIONS
1	Pathways and mechanisms of endocytic recycling. Nature Reviews Molecular Cell Biology, 2009, 10, 597-608.	37.0	1,227
2	Receptor-mediated Endocytosis in the <i>Caenorhabditis elegans </i> Oocyte. Molecular Biology of the Cell, 1999, 10, 4311-4326.	2.1	545
3	Genome-wide analysis identifies a general requirement for polarity proteins in endocytic traffic. Nature Cell Biology, 2007, 9, 1066-1073.	10.3	252
4	Evidence that RME-1, a conserved C. elegans EH-domain protein, functions in endocytic recycling. Nature Cell Biology, 2001, 3, 573-579.	10.3	248
5	Genetic Analysis of Lysosomal Trafficking inCaenorhabditis elegans. Molecular Biology of the Cell, 2005, 16, 3273-3288.	2.1	238
6	Rme-1 regulates the distribution and function of the endocytic recycling compartment in mammalian cells. Nature Cell Biology, 2001, 3, 567-572.	10.3	234
7	Caenorhabditis elegans functional orthologue of human protein h-mucolipin-1 is required for lysosome biogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 4483-4488.	7.1	210
8	RAB-10 Is Required for Endocytic Recycling in the Caenorhabditis elegans Intestine. Molecular Biology of the Cell, 2006, 17, 1286-1297.	2.1	187
9	AMPH-1/Amphiphysin/Bin1 functions with RME-1/Ehd1 in endocytic recycling. Nature Cell Biology, 2009, 11, 1399-1410.	10.3	174
10	The P4-ATPase TAT-5 Inhibits the Budding of Extracellular Vesicles in C.Âelegans Embryos. Current Biology, 2011, 21, 1951-1959.	3.9	171
11	Distribution and Transport of Cholesterol in <i>Caenorhabditis elegans</i> . Molecular Biology of the Cell, 2001, 12, 1725-1736.	2.1	160
12	Regulation of endocytic recycling by C. elegans Rab35 and its regulator RME-4, a coated-pit protein. EMBO Journal, 2008, 27, 1183-1196.	7.8	160
13	RME-8, a Conserved J-Domain Protein, Is Required for Endocytosis in <i>Caenorhabditis elegans</i> Molecular Biology of the Cell, 2001, 12, 2011-2021.	2.1	151
14	Rab10 Regulates Membrane Transport through Early Endosomes of Polarized Madin-Darby Canine Kidney Cells. Molecular Biology of the Cell, 2006, 17, 3156-3175.	2.1	151
15	Caenorhabditis elegans RME-6 is a novel regulator of RAB-5 at the clathrin-coated pit. Nature Cell Biology, 2005, 7, 559-569.	10.3	144
16	EHD Proteins Associate with Syndapin I and II and Such Interactions Play a Crucial Role in Endosomal Recycling. Molecular Biology of the Cell, 2005, 16, 3642-3658.	2.1	143
17	Regulation of endosomal clathrin and retromer-mediated endosome to Golgi retrograde transport by the J-domain protein RME-8. EMBO Journal, 2009, 28, 3290-3302.	7.8	137
18	Mechanisms of EHD/RME‶ Protein Function in Endocytic Transport. Traffic, 2008, 9, 2043-2052.	2.7	128

#	Article	IF	Citations
19	The Atg6/Vps30/Beclin 1 ortholog BEC-1 mediates endocytic retrograde transport in addition to autophagy in <i>C. elegans </i> . Autophagy, 2011, 7, 386-400.	9.1	109
20	Coordinated regulation of AP2 uncoating from clathrin-coated vesicles by rab5 and hRME-6. Journal of Cell Biology, 2008, 183, 499-511.	5.2	107
21	Dynamic Regulation of Caveolin-1 Trafficking in the Germ Line and Embryo of Caenorhabditis elegans. Molecular Biology of the Cell, 2006, 17, 3085-3094.	2.1	106
22	Analysis of Articulation Between Clathrin and Retromer in Retrograde Sorting on Early Endosomes. Traffic, 2009, 10, 1868-1880.	2.7	106
23	Caenorhabditis elegans auxilin: a J-domain protein essential for clathrin-mediated endocytosis in vivo. Nature Cell Biology, 2001, 3, 215-219.	10.3	91
24	Rab11 is required for synchronous secretion of chondroitin proteoglycans after fertilization in <i>Caenorhabditis elegans</i>	2.0	90
25	EHBP-1 Functions with RAB-10 during Endocytic Recycling in <i>Caenorhabditis elegans</i> Biology of the Cell, 2010, 21, 2930-2943.	2.1	90
26	Rme-1 regulates the recycling of the cystic fibrosis transmembrane conductance regulator. American Journal of Physiology - Cell Physiology, 2003, 285, C1009-C1018.	4.6	84
27	The <i>Caenorhabditis elegans sel-1</i> Gene, a Negative Regulator of <i>lin-12</i> and <i>glp-1</i> , Encodes a Predicted Extracellular Protein. Genetics, 1996, 143, 237-247.	2.9	84
28	RAB-10 Regulates Glutamate Receptor Recycling in a Cholesterol-dependent Endocytosis Pathway. Molecular Biology of the Cell, 2007, 18, 4387-4396.	2.1	78
29	EGG-3 Regulates Cell-Surface and Cortex Rearrangements during Egg Activation in Caenorhabditis elegans. Current Biology, 2007, 17, 1555-1560.	3.9	76
30	Differential requirements for clathrin in receptor-mediated endocytosis and maintenance of synaptic vesicle pools. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 1139-1144.	7.1	75
31	EGG-4 and EGG-5 Link Events of the Oocyte-to-Embryo Transition with Meiotic Progression in C. elegans. Current Biology, 2009, 19, 1752-1757.	3.9	75
32	RAB-10-GTPase–mediated regulation of endosomal phosphatidylinositol-4,5-bisphosphate. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E2306-15.	7.1	74
33	ATP Binding Regulates Oligomerization and Endosome Association of RME-1 Family Proteins. Journal of Biological Chemistry, 2005, 280, 17213-17220.	3.4	72
34	Deciphering Endocytosis in Caenorhabditis elegans. Traffic, 2002, 3, 11-19.	2.7	71
35	C. elegans as a model for membrane traffic. WormBook, 2014, , 1-47.	5. 3	70
36	BMP signaling requires retromer-dependent recycling of the type I receptor. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 2578-2583.	7.1	69

#	Article	IF	Citations
37	SNX-1 and RME-8 oppose the assembly of HGRS-1/ESCRT-0 degradative microdomains on endosomes. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E307-E316.	7.1	67
38	Genetic Analysis of the Myotubularin Family of Phosphatases in Caenorhabditis elegans. Journal of Biological Chemistry, 2003, 278, 34380-34386.	3.4	64
39	AP2 hemicomplexes contribute independently to synaptic vesicle endocytosis. ELife, 2013, 2, e00190.	6.0	63
40	A Novel Requirement for C. elegans Alix/ALX-1 in RME-1-Mediated Membrane Transport. Current Biology, 2007, 17, 1913-1924.	3.9	61
41	SH3 interactome conserves general function over specific form. Molecular Systems Biology, 2013, 9, 652.	7.2	61
42	Requirements for F-BAR Proteins TOCA-1 and TOCA-2 in Actin Dynamics and Membrane Trafficking during Caenorhabditis elegans Oocyte Growth and Embryonic Epidermal Morphogenesis. PLoS Genetics, 2009, 5, e1000675.	3.5	58
43	RAB-6.2 and the retromer regulate glutamate receptor recycling through a retrograde pathway. Journal of Cell Biology, 2012, 196, 85-101.	5.2	53
44	The Egg Surface LDL Receptor Repeat-Containing Proteins EGG-1 and EGG-2 Are Required for Fertilization in Caenorhabditis elegans. Current Biology, 2005, 15, 2222-2229.	3.9	52
45	RAB-10 Promotes EHBP-1 Bridging of Filamentous Actin and Tubular Recycling Endosomes. PLoS Genetics, 2016, 12, e1006093.	3.5	52
46	Immuno-EM Localization of GFP-tagged Yolk Proteins in <i>C. Elegans</i> Using Microwave Fixation. Journal of Histochemistry and Cytochemistry, 2001, 49, 949-956.	2.5	47
47	RAB-5 and RAB-10 cooperate to regulate neuropeptide release in <i>Caenorhabditis elegans</i> Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 18944-18949.	7.1	47
48	A TOCA/CDC-42/PAR/WAVE functional module required for retrograde endocytic recycling. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E1443-52.	7.1	43
49	Endosomal microdomains: Formation and function. Current Opinion in Cell Biology, 2020, 65, 86-95.	5.4	43
50	Phagocytic receptor signaling regulates clathrin and epsin-mediated cytoskeletal remodeling during apoptotic cell engulfment in <i>C. elegans</i> . Development (Cambridge), 2013, 140, 3230-3243.	2.5	39
51	The JIP3 scaffold protein UNCâ€16 regulates RABâ€5 dependent membrane trafficking at <i>C. elegans</i> synapses. Developmental Neurobiology, 2009, 69, 174-190.	3.0	36
52	Basolateral Endocytic Recycling Requires RAB-10 and AMPH-1 Mediated Recruitment of RAB-5 GAP TBC-2 to Endosomes. PLoS Genetics, 2015, 11, e1005514.	3.5	36
53	CED-10/Rac1 Regulates Endocytic Recycling through the RAB-5 GAP TBC-2. PLoS Genetics, 2012, 8, e1002785.	3.5	33
54	Control of clathrin-mediated endocytosis by NIMA family kinases. PLoS Genetics, 2020, 16, e1008633.	3.5	32

#	Article	IF	Citations
55	Essential roles of snap-29 in C. elegans. Developmental Biology, 2011, 355, 77-88.	2.0	30
56	Intracellular trafficking. WormBook, 2006, , 1-9.	5. 3	30
57	<i>Caenorhabditis elegans num-1</i> Negatively Regulates Endocytic Recycling. Genetics, 2008, 179, 375-387.	2.9	26
58	Syndapin/SDPN-1 is required for endocytic recycling and endosomal actin association in the <i>Caenorhabditis elegans </i> intestine. Molecular Biology of the Cell, 2016, 27, 3746-3756.	2.1	20
59	Functional genomic maps in Caenorhabditis elegans. Current Opinion in Cell Biology, 2003, 15, 206-212.	5.4	19
60	Interactions between Rab and Arf GTPases regulate endosomal phosphatidylinositol-4,5-bisphosphate during endocytic recycling. Small GTPases, 2013, 4, 106-109.	1.6	19
61	RAB-5 Controls the Cortical Organization and Dynamics of PAR Proteins to Maintain C. elegans Early Embryonic Polarity. PLoS ONE, 2012, 7, e35286.	2.5	18
62	Regulated lysosomal trafficking as a mechanism for regulating GABAA receptor abundance at synapses in Caenorhabditis elegans. Molecular and Cellular Neurosciences, 2010, 44, 307-317.	2.2	17
63	A novel requirement for ubiquitin-conjugating enzyme UBC-13 in retrograde recycling of MIG-14/Wntless and Wnt signaling. Molecular Biology of the Cell, 2018, 29, 2098-2112.	2.1	15
64	Stress increases in exopher-mediated neuronal extrusion require lipid biosynthesis, FGF, and EGF RAS/MAPK signaling. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	14
65	Quantitative Approaches for Scoring in vivo Neuronal Aggregate and Organelle Extrusion in Large Exopher Vesicles in C. elegans . Journal of Visualized Experiments, 2020, , .	0.3	13
66	Linking Gene Expression in the Intestine to Production of Gametes Through the Phosphate Transporter PITR-1 in <i>Caenorhabditis elegans</i>	2.9	11
67	SLC17A6/7/8 Vesicular Glutamate Transporter Homologs in Nematodes. Genetics, 2020, 214, 163-178.	2.9	11
68	In vivo analysis of recycling endosomes in Caenorhabditis elegans. Methods in Cell Biology, 2015, 130, 181-198.	1.1	8
69	Tetraspanins TSP-12 and TSP-14 function redundantly to regulate the trafficking of the type II BMP receptor in $\langle i \rangle$ Caenorhabditis elegans $\langle i \rangle$. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 2968-2977.	7.1	8
70	The CATP-8/P5A-type ATPase functions in multiple pathways during neuronal patterning. PLoS Genetics, 2021, 17, e1009475.	3.5	7
71	The ins and outs of endocytic transport. Nature Cell Biology, 2005, 7, 1151-1154.	10.3	3
72	The regulation of endocytosis by kinases: cell biology meets genomics. Genome Biology, 2005, 6, 245.	9.6	3

#	Article	IF	CITATIONS
73	Revealing Functional Crosstalk between Distinct Bioprocesses through Reciprocal Functional Tests of Genetically Interacting Genes. Cell Reports, 2019, 29, 2646-2658.e5.	6.4	2
74	Meiotic Maturation: Receptor Trafficking Is the Key. Current Biology, 2008, 18, R416-R418.	3.9	1
75	Developmental expression of regionally specific cell surface antigens in theXenopus gastrula. Genesis, 1990, 11, 110-122.	2.1	O
76	Phagocytic receptor signaling regulates clathrin and epsin-mediated cytoskeletal remodeling during apoptotic cell engulfment in C. elegans. Journal of Cell Science, 2013, 126, e1-e1.	2.0	0
77	Control of clathrin-mediated endocytosis by NIMA family kinases. , 2020, 16, e1008633.		O
78	Control of clathrin-mediated endocytosis by NIMA family kinases. , 2020, 16, e1008633.		0
79	Control of clathrin-mediated endocytosis by NIMA family kinases. , 2020, 16, e1008633.		O
80	Control of clathrin-mediated endocytosis by NIMA family kinases. , 2020, 16, e1008633.		0