
Julia Ladewig

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5240572/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Asymmetric Notch activity by differential inheritance of lysosomes in human neural stem cells. Science Advances, 2022, 8, eabl5792.	10.3	5
2	Human cerebral organoids reveal progenitor pathology in EML1â€linked cortical malformation. EMBO Reports, 2022, , e54027.	4.5	19
3	Voltammetric Approach for Characterizing the Biophysical and Chemical Functionality of Human Induced Pluripotent Stem Cell-Derived Serotonin Neurons. Analytical Chemistry, 2022, 94, 8847-8856.	6.5	3
4	Cerebral organoids to unravel the mechanisms underlying malformations of human cortical development. Seminars in Cell and Developmental Biology, 2021, 111, 15-22.	5.0	5
5	Mutations in the Heterotopia Gene Eml1/EML1 Severely Disrupt the Formation of Primary Cilia. Cell Reports, 2019, 28, 1596-1611.e10.	6.4	28
6	In Vitro Recapitulation of Developmental Transitions in Human Neural Stem Cells. Stem Cells, 2019, 37, 1429-1440.	3.2	6
7	Genes and Mechanisms Involved in the Generation and Amplification of Basal Radial Glial Cells. Frontiers in Cellular Neuroscience, 2019, 13, 381.	3.7	65
8	Analysis of short tandem repeat expansions and their methylation state with nanopore sequencing. Nature Biotechnology, 2019, 37, 1478-1481.	17.5	117
9	Drug discovery in psychopharmacology: from 2D models to cerebral organoids. Dialogues in Clinical Neuroscience, 2019, 21, 203-224.	3.7	9
10	Genome Editing in Neuroepithelial Stem Cells to Generate Human Neurons with High Adenosine-Releasing Capacity. Stem Cells Translational Medicine, 2018, 7, 477-486.	3.3	8
11	Cortical organoids: why all this hype?. Current Opinion in Genetics and Development, 2018, 52, 22-28.	3.3	13
12	An Organoid-Based Model of Cortical Development Identifies Non-Cell-Autonomous Defects in Wnt Signaling Contributing to Miller-Dieker Syndrome. Cell Reports, 2017, 19, 50-59.	6.4	223
13	A Little Bit of Guidance: Mini Brains on Their Route to Adolescence. Cell Stem Cell, 2017, 21, 157-158.	11.1	1
14	Modeling CNS Development and Disease. Stem Cells International, 2016, 2016, 1-2.	2.5	2
15	Arylsulfatase A Overexpressing Human iPSC-derived Neural Cells Reduce CNS Sulfatide Storage in a Mouse Model of Metachromatic Leukodystrophy. Molecular Therapy, 2015, 23, 1519-1531.	8.2	44
16	Auto-attraction of neural precursors and their neuronal progeny impairs neuronal migration. Nature Neuroscience, 2014, 17, 24-26.	14.8	35
17	Embryonic Stem Cell–Based Modeling of Tau Pathology in Human Neurons. American Journal of Pathology, 2013, 182, 1769-1779.	3.8	35
18	APP Processing in Human Pluripotent Stem Cell-Derived Neurons Is Resistant to NSAID-Based Î ³ -Secretase Modulation. Stem Cell Reports, 2013, 1, 491-498.	4.8	58

Julia Ladewig

#	Article	IF	CITATIONS
19	Leveling Waddington: the emergence of direct programming and the loss of cell fate hierarchies. Nature Reviews Molecular Cell Biology, 2013, 14, 225-236.	37.0	200
20	Leveling Waddington: the emergence of direct programming and the loss of cell fate hierarchies. Nature Reviews Molecular Cell Biology, 2013, 14, 225-36.	37.0	18
21	Small molecules enable highly efficient neuronal conversion of human fibroblasts. Nature Methods, 2012, 9, 575-578.	19.0	288
22	Presenilin-1 L166P Mutant Human Pluripotent Stem Cell–Derived Neurons Exhibit Partial Loss of γ-Secretase Activity in Endogenous Amyloid-β Generation. American Journal of Pathology, 2012, 180, 2404-2416.	3.8	104
23	Capture of Neuroepithelial-Like Stem Cells from Pluripotent Stem Cells Provides a Versatile System for In Vitro Production of Human Neurons. PLoS ONE, 2012, 7, e29597.	2.5	254
24	Human-Induced Pluripotent Stem Cells form Functional Neurons and Improve Recovery After Grafting in Stroke-Damaged Brain. Stem Cells, 2012, 30, 1120-1133.	3.2	264
25	Excitation-induced ataxin-3 aggregation in neurons from patients with Machado–Joseph disease. Nature, 2011, 480, 543-546.	27.8	282
26	A rosette-type, self-renewing human ES cell-derived neural stem cell with potential for in vitro instruction and synaptic integration. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 3225-3230.	7.1	456
27	Lineage Selection of Functional and Cryopreservable Human Embryonic Stem Cell-Derived Neurons. Stem Cells, 2008, 26, 1705-1712.	3.2	37
28	Widespread occurrence of serpin genes with multiple reactive centre-containing exon cassettes in insects and nematodes. Gene, 2002, 293, 97-105.	2.2	52