
## Kar-Chun Tan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/523863/publications.pdf Version: 2024-02-01



ΚΛΡ-CHIIN ΤΛΝ

| #  | Article                                                                                                                                                                                                                                                                                | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Dothideomycete–Plant Interactions Illuminated by Genome Sequencing and EST Analysis of the Wheat<br>Pathogen <i>Stagonospora nodorum</i> . Plant Cell, 2007, 19, 3347-3368.                                                                                                            | 6.6 | 235       |
| 2  | The nutrient supply of pathogenic fungi; a fertile field for study. Molecular Plant Pathology, 2003, 4, 203-210.                                                                                                                                                                       | 4.2 | 195       |
| 3  | SnTox3 Acts in Effector Triggered Susceptibility to Induce Disease on Wheat Carrying the Snn3 Gene.<br>PLoS Pathogens, 2009, 5, e1000581.                                                                                                                                              | 4.7 | 175       |
| 4  | Stagonospora nodorum: cause of stagonospora nodorum blotch of wheat. Molecular Plant<br>Pathology, 2006, 7, 147-156.                                                                                                                                                                   | 4.2 | 153       |
| 5  | Assessing the impact of transcriptomics, proteomics and metabolomics on fungal phytopathology.<br>Molecular Plant Pathology, 2009, 10, 703-715.                                                                                                                                        | 4.2 | 121       |
| 6  | Accessories Make the Outfit: Accessory Chromosomes and Other Dispensable DNA Regions in Plant-Pathogenic Fungi. Molecular Plant-Microbe Interactions, 2018, 31, 779-788.                                                                                                               | 2.6 | 93        |
| 7  | The Disruption of a Gα Subunit Sheds New Light on the Pathogenicity of Stagonospora nodorum on<br>Wheat. Molecular Plant-Microbe Interactions, 2004, 17, 456-466.                                                                                                                      | 2.6 | 83        |
| 8  | Proteinaceous necrotrophic effectors in fungal virulence. Functional Plant Biology, 2010, 37, 907.                                                                                                                                                                                     | 2.1 | 80        |
| 9  | Differential effector gene expression underpins epistasis in a plant fungal disease. Plant Journal, 2016,<br>87, 343-354.                                                                                                                                                              | 5.7 | 75        |
| 10 | Regulation of proteinaceous effector expression in phytopathogenic fungi. PLoS Pathogens, 2017, 13, e1006241.                                                                                                                                                                          | 4.7 | 75        |
| 11 | Quantitative Variation in Effector Activity of ToxA Isoforms from <i>Stagonospora nodorum</i> and <i>Pyrenophora tritici-repentis</i> . Molecular Plant-Microbe Interactions, 2012, 25, 515-522.                                                                                       | 2.6 | 70        |
| 12 | A functionally conserved Zn <sub>2</sub> Cys <sub>6</sub> binuclear cluster transcription factor class regulates necrotrophic effector gene expression and hostâ€specific virulence of two major Pleosporales fungal pathogens of wheat. Molecular Plant Pathology, 2017, 18, 420-434. | 4.2 | 69        |
| 13 | The Transcription Factor StuA Regulates Central Carbon Metabolism, Mycotoxin Production, and<br>Effector Gene Expression in the Wheat Pathogen Stagonospora nodorum. Eukaryotic Cell, 2010, 9,<br>1100-1108.                                                                           | 3.4 | 63        |
| 14 | Mannitol 1-Phosphate Metabolism Is Required for Sporulation in Planta of the Wheat Pathogen<br>Stagonospora nodorum. Molecular Plant-Microbe Interactions, 2005, 18, 110-115.                                                                                                          | 2.6 | 53        |
| 15 | Novel sources of resistance to Septoria nodorum blotch in the Vavilov wheat collection identified by genome-wide association studies. Theoretical and Applied Genetics, 2018, 131, 1223-1238.                                                                                          | 3.6 | 53        |
| 16 | A quantitative PCR approach to determine gene copy number. Fungal Genetics Reports, 2008, 55, 5-8.                                                                                                                                                                                     | 0.6 | 53        |
| 17 | Transcription factor control of virulence in phytopathogenic fungi. Molecular Plant Pathology, 2021, 22, 858-881.                                                                                                                                                                      | 4.2 | 50        |
| 18 | Metabolite profiling identifies the mycotoxin alternariol in the pathogen Stagonospora nodorum.<br>Metabolomics, 2009, 5, 330-335.                                                                                                                                                     | 3.0 | 48        |

Kar-Chun Tan

| #  | Article                                                                                                                                                                                                                                                                     | IF        | CITATIONS    |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|--------------|
| 19 | Assessing European Wheat Sensitivities to Parastagonospora nodorum Necrotrophic Effectors and<br>Fine-Mapping the Snn3-B1 Locus Conferring Sensitivity to the Effector SnTox3. Frontiers in Plant<br>Science, 2018, 9, 881.                                                 | 3.6       | 48           |
| 20 | Genetic mapping using a wheat multi-founder population reveals a locus on chromosome 2A controlling resistance to both leaf and glume blotch caused by the necrotrophic fungal pathogen Parastagonospora nodorum. Theoretical and Applied Genetics, 2020, 133, 785-808.     | 3.6       | 48           |
| 21 | Comprehensive Annotation of the Parastagonospora nodorum Reference Genome Using<br>Next-Generation Genomics, Transcriptomics and Proteogenomics. PLoS ONE, 2016, 11, e0147221.                                                                                              | 2.5       | 47           |
| 22 | A Signaling-Regulated, Short-Chain Dehydrogenase of <i>Stagonospora nodorum</i> Regulates<br>Asexual Development. Eukaryotic Cell, 2008, 7, 1916-1929.                                                                                                                      | 3.4       | 45           |
| 23 | Pan-Parastagonospora Comparative Genome Analysis—Effector Prediction and Genome Evolution.<br>Genome Biology and Evolution, 2018, 10, 2443-2457.                                                                                                                            | 2.5       | 43           |
| 24 | Fine-Mapping the Wheat <i>Snn1</i> Locus Conferring Sensitivity to the <i>Parastagonospora<br/>nodorum</i> Necrotrophic Effector SnTox1 Using an Eight Founder Multiparent Advanced Generation<br>Inter-Cross Population. G3: Genes, Genomes, Genetics, 2015, 5, 2257-2266. | 1.8       | 38           |
| 25 | Sensitivity to three Parastagonospora nodorum necrotrophic effectors in current Australian wheat cultivars and the presence of further fungal effectors. Crop and Pasture Science, 2014, 65, 150.                                                                           | 1.5       | 37           |
| 26 | Spatial and temporal coordination of expression of immune response genes during Pseudomonas infection of horseshoe crab, Carcinoscorpius rotundicauda. Genes and Immunity, 2005, 6, 557-574.                                                                                | 4.1       | 34           |
| 27 | A specific fungal transcription factor controls effector gene expression and orchestrates the establishment of the necrotrophic pathogen lifestyle on wheat. Scientific Reports, 2019, 9, 15884.                                                                            | 3.3       | 34           |
| 28 | Deep proteogenomics; high throughput gene validation by multidimensional liquid chromatography<br>and mass spectrometry of proteins from the fungal wheat pathogen Stagonospora nodorum. BMC<br>Bioinformatics, 2009, 10, 301.                                              | 2.6       | 33           |
| 29 | Functional redundancy of necrotrophic effectors – consequences for exploitation for breeding.<br>Frontiers in Plant Science, 2015, 6, 501.                                                                                                                                  | 3.6       | 33           |
| 30 | Analysis of Reproducibility of Proteome Coverage and Quantitation Using Isobaric Mass Tags (iTRAQ) Tj ETQq0 C                                                                                                                                                               | 0 ggBT /O | verlock 10 T |
| 31 | Quantitative proteomic analysis of Gâ€protein signalling in <i>Stagonospora nodorum</i> using isobaric tags for relative and absolute quantification. Proteomics, 2010, 10, 38-47.                                                                                          | 2.2       | 25           |
| 32 | Proteomic identification of extracellular proteins regulated by the Gna1 G $\hat{I}\pm$ subunit in Stagonospora nodorum. Mycological Research, 2009, 113, 523-531.                                                                                                          | 2.5       | 24           |
| 33 | Septoria Nodorum Blotch of Wheat: Disease Management and Resistance Breeding in the Face of Shifting Disease Dynamics and a Changing Environment. Phytopathology, 2021, 111, 906-920.                                                                                       | 2.2       | 24           |
| 34 | Genomeâ€Wide Association Mapping of Resistance to Septoria Nodorum Leaf Blotch in a Nordic Spring<br>Wheat Collection. Plant Genome, 2019, 12, 180105.                                                                                                                      | 2.8       | 22           |
| 35 | Absence of detectable yield penalty associated with insensitivity to <scp>P</scp> leosporales<br>necrotrophic effectors in wheat grown in the <scp>W</scp> est <scp>A</scp> ustralian wheat belt.<br>Plant Pathology, 2014, 63, 1027-1032.                                  | 2.4       | 20           |
| 36 | Development of genetic <scp>SSR</scp> markers in <i>Blumeria graminis</i> f. sp. <i>hordei</i> and application to isolates from Australia. Plant Pathology, 2015, 64, 337-343.                                                                                              | 2.4       | 16           |

Kar-Chun Tan

| #  | Article                                                                                                                                                                                                                                                                                          | IF           | CITATIONS     |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|---------------|
| 37 | Low Amplitude Boom-and-Bust Cycles Define the Septoria Nodorum Blotch Interaction. Frontiers in<br>Plant Science, 2019, 10, 1785.                                                                                                                                                                | 3.6          | 16            |
| 38 | Vavilov wheat accessions provide useful sources of resistance to tan spot (syn. yellow spot) of wheat. Plant Pathology, 2018, 67, 1076-1087.                                                                                                                                                     | 2.4          | 15            |
| 39 | Chromosome-level genome assembly and manually-curated proteome of model necrotroph<br>Parastagonospora nodorum Sn15 reveals a genome-wide trove of candidate effector homologs, and<br>redundancy of virulence-related functions within an accessory chromosome. BMC Genomics, 2021, 22,<br>382. | 2.8          | 12            |
| 40 | Necrotrophic Pathogens of Wheat. , 2016, , 273-278.                                                                                                                                                                                                                                              |              | 11            |
| 41 | Identification and cross-validation of genetic loci conferring resistance to Septoria nodorum blotch<br>using a German multi-founder winter wheat population. Theoretical and Applied Genetics, 2021, 134,<br>125-142.                                                                           | 3.6          | 11            |
| 42 | Hidden in plain sight: a molecular field survey of three wheat leaf blotch fungal diseases in<br>North-Western Europe shows co-infection is widespread. European Journal of Plant Pathology, 2021,<br>160, 949-962.                                                                              | 1.7          | 9             |
| 43 | Dissecting the role of histidine kinase and HOG1 mitogen-activated protein kinase signalling in stress tolerance and pathogenicity of Parastagonospora nodorum on wheat. Microbiology (United) Tj ETQq1 1 0.784                                                                                  | 1314 rg8T /( | Oveølock 10 T |
| 44 | Variability in an effector gene promoter of a necrotrophic fungal pathogen dictates epistasis and effector-triggered susceptibility in wheat. PLoS Pathogens, 2022, 18, e1010149.                                                                                                                | 4.7          | 9             |
| 45 | GWAS analysis reveals distinct pathogenicity profiles of Australian Parastagonospora nodorum<br>isolates and identification of marker-trait-associations to septoria nodorum blotch. Scientific<br>Reports, 2021, 11, 10085.                                                                     | 3.3          | 7             |
| 46 | Proteomic Techniques for Plant–Fungal Interactions. Methods in Molecular Biology, 2012, 835, 75-96.                                                                                                                                                                                              | 0.9          | 4             |
| 47 | Transcription factor lineages in plant-pathogenic fungi, connecting diversity with fungal virulence.<br>Fungal Genetics and Biology, 2022, 161, 103712.                                                                                                                                          | 2.1          | 4             |
| 48 | Gene Validation and Remodelling Using Proteogenomics of Phytophthora cinnamomi, the Causal Agent<br>of Dieback. Frontiers in Microbiology, 2021, 12, 665396.                                                                                                                                     | 3.5          | 3             |
| 49 | An optimized sporulation method for the wheat fungal pathogen Pyrenophora tritici-repentis. Plant<br>Methods, 2021, 17, 52.                                                                                                                                                                      | 4.3          | 2             |
| 50 | 12 Metabolomics and Proteomics to Dissect Fungal Phytopathogenicity. , 2014, , 301-319.                                                                                                                                                                                                          |              | 1             |