Thomas von Zglinicki

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5238328/publications.pdf

Version: 2024-02-01

8755 6836 26,751 160 75 155 citations h-index g-index papers 162 162 162 25410 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Short senolytic or senostatic interventions rescue progression of radiation-induced frailty and premature ageing in mice. ELife, 2022, 11 , .	6.0	27
2	Mitochondrial dysfunction in cell senescence and aging. Journal of Clinical Investigation, 2022, 132 , .	8.2	201
3	Senescence in Post-Mitotic Cells: A Driver of Aging?. Antioxidants and Redox Signaling, 2021, 34, 308-323.	5.4	117
4	Surprisingly long survival of premature conclusions about naked moleâ€rat biology. Biological Reviews, 2021, 96, 376-393.	10.4	33
5	Wholeâ€body senescent cell clearance alleviates ageâ€related brain inflammation and cognitive impairment in mice. Aging Cell, 2021, 20, e13296.	6.7	186
6	Neutrophils induce paracrine telomere dysfunction and senescence in ROSâ€dependent manner. EMBO Journal, 2021, 40, e106048.	7.8	101
7	How good is the evidence that cellular senescence causes skin ageing?. Ageing Research Reviews, 2021, 71, 101456.	10.9	29
8	Senescence and Inflammatory Markers for Predicting Clinical Progression in Parkinson's Disease: The ICICLE-PD Study. Journal of Parkinson's Disease, 2020, 10, 193-206.	2.8	34
9	Immunosenescence profiles are not associated with muscle strength, physical performance and sarcopenia risk in very old adults: The Newcastle 85+ Study. Mechanisms of Ageing and Development, 2020, 190, 111321.	4.6	7
10	Antiâ€inflammatory treatment rescues memory deficits during aging in <i>nfkb1</i> ^{â^'/â^'} mice. Aging Cell, 2020, 19, e13188.	6.7	38
11	Cellular Senescence: Defining a Path Forward. Cell, 2019, 179, 813-827.	28.9	1,551
12	Smoking does not accelerate leucocyte telomere attrition: a meta-analysis of 18 longitudinal cohorts. Royal Society Open Science, 2019, 6, 190420.	2.4	33
13	Sublethal whole-body irradiation causes progressive premature frailty in mice. Mechanisms of Ageing and Development, 2019, 180, 63-69.	4.6	24
14	Targeting senescent cells alleviates obesityâ€induced metabolic dysfunction. Aging Cell, 2019, 18, e12950.	6.7	395
15	The mTORC1-autophagy pathway is a target for senescent cell elimination. Biogerontology, 2019, 20, 331-335.	3.9	24
16	Senolytics and senostatics as adjuvant tumour therapy. EBioMedicine, 2019, 41, 683-692.	6.1	136
17	Bioengineering the microanatomy of human skin. Journal of Anatomy, 2019, 234, 438-455.	1.5	91
18	The bystander effect contributes to the accumulation of senescent cells in vivo. Aging Cell, 2019, 18, e12848.	6.7	161

#	Article	IF	CITATIONS
19	Obesity-Induced Cellular Senescence Drives Anxiety and Impairs Neurogenesis. Cell Metabolism, 2019, 29, 1061-1077.e8.	16.2	293
20	The senescent bystander effect is caused by ROS-activated NF-ήB signalling. Mechanisms of Ageing and Development, 2018, 170, 30-36.	4.6	162
21	Metabolic memory of dietary restriction ameliorates DNA damage and adipocyte size in mouse visceral adipose tissue. Experimental Gerontology, 2018, 113, 228-236.	2.8	5
22	The DNA Damage Response in Neurons: Die by Apoptosis or Survive in a Senescence-Like State?. Journal of Alzheimer's Disease, 2017, 60, S107-S131.	2.6	89
23	Grip strength and inflammatory biomarker profiles in very old adults. Age and Ageing, 2017, 46, 976-982.	1.6	24
24	Persistent mTORC1 signaling in cell senescence results from defects in amino acid and growth factor sensing. Journal of Cell Biology, 2017, 216, 1949-1957.	5.2	106
25	Cellular senescence drives age-dependent hepatic steatosis. Nature Communications, 2017, 8, 15691.	12.8	673
26	Mitochondria in Cell Senescence: Is Mitophagy the Weakest Link?. EBioMedicine, 2017, 21, 7-13.	6.1	260
27	The Ageing Brain: Effects on DNA Repair and DNA Methylation in Mice. Genes, 2017, 8, 75.	2.4	28
28	SQSTM1/p62 mediates crosstalk between autophagy and the UPS in DNA repair. Autophagy, 2016, 12, 1917-1930.	9.1	120
29	Mitochondria are required for proâ€ageing features of the senescent phenotype. EMBO Journal, 2016, 35, 724-742.	7.8	527
30	Longitudinal telomere length shortening and cognitive and physical decline in later life: The Lothian Birth Cohorts 1936 and 1921. Mechanisms of Ageing and Development, 2016, 154, 43-48.	4.6	37
31	<scp>CMV</scp> seropositivity and Tâ€eell senescence predict increased cardiovascular mortality in octogenarians: results from the Newcastle 85+ study. Aging Cell, 2016, 15, 389-392.	6.7	103
32	Frailty in mouse ageing: A conceptual approach. Mechanisms of Ageing and Development, 2016, 160, 34-40.	4.6	39
33	Data from molecular dynamics simulations in support of the role of human CES1 in the hydrolysis of Amplex Red. Data in Brief, 2016, 6, 865-870.	1.0	2
34	Accelerated Aging in Bone Marrow Transplant Survivors. JAMA Oncology, 2016, 2, 1267-1268.	7.1	4
35	Carboxylesterase converts Amplex red to resorufin: Implications for mitochondrial H2O2 release assays. Free Radical Biology and Medicine, 2016, 90, 173-183.	2.9	83
36	Decreased mTOR signalling reduces mitochondrial ROS in brain via accumulation of the telomerase protein TERT within mitochondria. Aging, 2016, 8, 2551-2567.	3.1	66

#	Article	IF	CITATIONS
37	Reproducibility of telomere length assessment: Authors' Response to Damjan Krstajic and Ljubomir Buturovic. International Journal of Epidemiology, 2015, 44, 1739-1741.	1.9	8
38	Comparison of senescence-associated miRNAs in primary skin and lung fibroblasts. Biogerontology, 2015, 16, 423-434.	3.9	14
39	Inflammation, But Not Telomere Length, Predicts Successful Ageing at Extreme Old Age: A Longitudinal Study of Semi-supercentenarians. EBioMedicine, 2015, 2, 1549-1558.	6.1	243
40	Is Southern blotting necessary to measure telomere length reproducibly? Authors' Response to: Commentary: The reliability of telomere length measurements. International Journal of Epidemiology, 2015, 44, 1686-1687.	1.9	8
41	Myocardial Ischemia and Reperfusion Leads to Transient CD8 Immune Deficiency and Accelerated Immunosenescence in CMV-Seropositive Patients. Circulation Research, 2015, 116, 87-98.	4.5	33
42	Reproducibility of telomere length assessment: an international collaborative study. International Journal of Epidemiology, 2015, 44, 1673-1683.	1.9	133
43	Low abundance of the matrix arm of complex I in mitochondria predicts longevity in mice. Nature Communications, 2014, 5, 3837.	12.8	164
44	Dynamic Modelling of Pathways to Cellular Senescence Reveals Strategies for Targeted Interventions. PLoS Computational Biology, 2014, 10, e1003728.	3.2	121
45	Rate of telomere shortening and cardiovascular damage: a longitudinal study in the 1946 British Birth Cohort. European Heart Journal, 2014, 35, 3296-3303.	2.2	55
46	Assessment of sleep and circadian rhythm disorders in the very old: the Newcastle 85+ Cohort Study. Age and Ageing, 2014, 43, 57-63.	1.6	42
47	Biomarkers of healthy ageing: expectations and validation. Proceedings of the Nutrition Society, 2014, 73, 422-429.	1.0	22
48	Gender and telomere length: Systematic review and meta-analysis. Experimental Gerontology, 2014, 51, 15-27.	2.8	394
49	Atorvastatin induces T cell proliferation by a telomerase reverse transcriptase (TERT) mediated mechanism. Atherosclerosis, 2014, 236, 312-320.	0.8	42
50	Chronic inflammation induces telomere dysfunction and accelerates ageing in mice. Nature Communications, 2014, 5, 4172.	12.8	596
51	Inflammation, Telomere Length, and Grip Strength: A 10-year Longitudinal Study. Calcified Tissue International, 2014, 95, 54-63.	3.1	52
52	Acquisition of aberrant DNA methylation is associated with frailty in the very old: findings from the Newcastle 85+ Study. Biogerontology, 2014, 15, 317-328.	3.9	25
53	Reactive Oxygen Species Production and Mitochondrial Dysfunction in White Blood Cells Are Not Valid Biomarkers of Ageing in the Very Old. PLoS ONE, 2014, 9, e91005.	2.5	11
54	Shared Ageing Research Models (ShARM): a new facility to support ageing research. Biogerontology, 2013, 14, 789-794.	3.9	8

#	Article	IF	CITATIONS
55	Mitochondrial dysfunction in osteoarthritis is associated with downâ€regulation of superoxide dismutase 2. Arthritis and Rheumatism, 2013, 65, 378-387.	6.7	113
56	Measuring Reactive Oxygen Species in Senescent Cells. Methods in Molecular Biology, 2013, 965, 253-263.	0.9	16
57	Tissue differences in BER-related incision activity and non-specific nuclease activity as measured by the comet assay. Mutagenesis, 2013, 28, 673-681.	2.6	10
58	A life course approach to biomarkers of ageing. , 2013, , 177-186.		2
59	Telomere Length and Physical Performance at Older Ages: An Individual Participant Meta-Analysis. PLoS ONE, 2013, 8, e69526.	2.5	35
60	Inflammation and Not Cardiovascular Risk Factors Is Associated With Short Leukocyte Telomere Length in 13- to 16-Year-Old Adolescents. Arteriosclerosis, Thrombosis, and Vascular Biology, 2012, 32, 2029-2034.	2.4	45
61	Standardization and quality controls for the methylated DNA immunoprecipitation technique. Epigenetics, 2012, 7, 615-625.	2.7	19
62	Postmitotic neurons develop a p21â€dependent senescenceâ€like phenotype driven by a DNA damage response. Aging Cell, 2012, 11, 996-1004.	6.7	434
63	Telomere length and aging biomarkers in 70-year-olds: the Lothian Birth Cohort 1936. Neurobiology of Aging, 2012, 33, 1486.e3-1486.e8.	3.1	64
64	A senescent cell bystander effect: senescenceâ€induced senescence. Aging Cell, 2012, 11, 345-349.	6.7	538
65	Sustained telomere length in hepatocytes and cholangiocytes with increasing age in normal liver. Hepatology, 2012, 56, 1510-1520.	7.3	56
66	Male mice retain a metabolic memory of improved glucose tolerance induced during adult onset, short-term dietary restriction. Longevity & Healthspan, 2012, 1, 3.	6.7	49
67	A Stochastic Step Model of Replicative Senescence Explains ROS Production Rate in Ageing Cell Populations. PLoS ONE, 2012, 7, e32117.	2.5	50
68	Childhood Growth, IQ and Education as Predictors of White Blood Cell Telomere Length at Age 49–51 Years: The Newcastle Thousand Families Study. PLoS ONE, 2012, 7, e40116.	2.5	17
69	Frailty and the role of inflammation, immunosenescence and cellular ageing in the very old: Cross-sectional findings from the Newcastle 85+ Study. Mechanisms of Ageing and Development, 2012, 133, 456-466.	4.6	347
70	Mitochondrial dysfunction and cell senescence â€" skin deep into mammalian aging. Aging, 2012, 4, 74-75.	3.1	22
71	Conserved cysteine residues in the mammalian lamin A tail are essential for cellular responses to ROS generation. Aging Cell, 2011, 10, 1067-1079.	6.7	79
72	Gross energy metabolism in mice under late onset, short term caloric restriction. Mechanisms of Ageing and Development, 2011, 132, 202-209.	4.6	15

#	Article	IF	Citations
73	Assessment of a large panel of candidate biomarkers of ageing in the Newcastle 85+ study. Mechanisms of Ageing and Development, 2011, 132, 496-502.	4.6	104
74	Measuring DNA repair incision activity of mouse tissue extracts towards singlet oxygen-induced DNA damage: a comet-based in vitro repair assay. Mutagenesis, 2011, 26, 461-471.	2.6	39
75	Telomere length and anaemia in old age: results from the Newcastle 85-plus Study* and the Leiden 85-plus Study. Age and Ageing, 2011, 40, 494-500.	1.6	13
76	An Important Role for CDK2 in G1 to S Checkpoint Activation and DNA Damage Response in Human Embryonic Stem Cells. Stem Cells, 2011, 29, 651-659.	3.2	119
77	Correction of radiolabel pulse–chase data by a mathematical model: application to mitochondrial turnover studies. Biochemical Society Transactions, 2010, 38, 1322-1328.	3.4	4
78	Quantitative assessment of markers for cell senescence. Experimental Gerontology, 2010, 45, 772-778.	2.8	208
79	Fat tissue, aging, and cellular senescence. Aging Cell, 2010, 9, 667-684.	6.7	834
80	Telomere Shortening Reduces Regenerative Capacity after Acute Kidney Injury. Journal of the American Society of Nephrology: JASN, 2010, 21, 327-336.	6.1	121
81	Feedback between p21 and reactive oxygen production is necessary for cell senescence. Molecular Systems Biology, 2010, 6, 347.	7.2	754
82	Adult-onset, short-term dietary restriction reduces cell senescence in mice. Aging, 2010, 2, 555-566.	3.1	116
83	DNA damage foci in mitosis are devoid of 53BP1. Cell Cycle, 2009, 8, 3379-3383.	2.6	105
84	Association of mitochondrial haplogroup J and mtDNA oxidative damage in two different North Spain elderly populations. Biogerontology, 2009, 10, 435-442.	3.9	42
85	Cellular senescence: unravelling complexity. Age, 2009, 31, 353-363.	3.0	40
86	The Relationship between the Aging- and Photo-Dependent T414G Mitochondrial DNA Mutation with Cellular Senescence and Reactive Oxygen Species Production in Cultured Skin Fibroblasts. Journal of Investigative Dermatology, 2009, 129, 1361-1366.	0.7	24
87	DNA damage response and cellular senescence in tissues of aging mice. Aging Cell, 2009, 8, 311-323.	6.7	566
88	Downregulation of Multiple Stress Defense Mechanisms During Differentiation of Human Embryonic Stem Cells. Stem Cells, 2008, 26, 455-464.	3.2	240
89	Architectural changes in the thymus of aging mice. Aging Cell, 2008, 7, 158-167.	6.7	116
90	Mitochondrial turnover in liver is fast <i>inÂvivo</i> and is accelerated by dietary restriction: application of a simple dynamic model. Aging Cell, 2008, 7, 920-923.	6.7	100

#	Article	IF	Citations
91	ssDNA fragments induce cell senescence by telomere uncapping. Experimental Gerontology, 2008, 43, 892-899.	2.8	16
92	Mitochondrial dysfunction is a possible cause of accelerated senescence of mesothelial cells exposed to high glucose. Biochemical and Biophysical Research Communications, 2008, 366, 793-799.	2.1	41
93	Telomerase does not counteract telomere shortening but protects mitochondrial function under oxidative stress. Journal of Cell Science, 2008, 121, 1046-1053.	2.0	399
94	Telomeres, Senescence, Oxidative Stress, and Heterogeneity., 2008,, 43-56.		1
95	Nucleoplasmic LAP2α–lamin A complexes are required to maintain a proliferative state in human fibroblasts. Journal of Cell Biology, 2007, 176, 163-172.	5.2	117
96	Mitochondrial Dysfunction Accounts for the Stochastic Heterogeneity in Telomere-Dependent Senescence. PLoS Biology, 2007, 5, e110.	5.6	612
97	DNA damage in telomeres and mitochondria during cellular senescence: is there a connection?. Nucleic Acids Research, 2007, 35, 7505-7513.	14.5	285
98	Premature senescence of mesothelial cells is associated with non-telomeric DNA damage. Biochemical and Biophysical Research Communications, 2007, 362, 707-711.	2.1	46
99	Mitochondria and ageing: winning and losing in the numbers game. BioEssays, 2007, 29, 908-917.	2.5	58
100	Cdkn1a deletion improves stem cell function and lifespan of mice with dysfunctional telomeres without accelerating cancer formation. Nature Genetics, 2007, 39, 99-105.	21.4	399
101	No association between socio-economic status and white blood cell telomere length. Aging Cell, 2007, 6, 125-128.	6.7	79
102	A continuous correlation between oxidative stress and telomere shortening in fibroblasts. Experimental Gerontology, 2007, 42, 1039-1042.	2.8	269
103	TRF2 overexpression diminishes repair of telomeric single-strand breaks and accelerates telomere shortening in human fibroblasts. Mechanisms of Ageing and Development, 2007, 128, 340-345.	4.6	48
104	Oxidative DNA Damage and Telomere Shortening. , 2007, , 100-108.		1
105	Oxygen free radicals in cell senescence: Are they signal transducers?. Free Radical Research, 2006, 40, 1277-1283.	3.3	102
106	Extended lifespan and long telomeres in rectal fibroblasts from late-onset ulcerative colitis patients. European Journal of Gastroenterology and Hepatology, 2006, 18, 133-141.	1.6	12
107	Tumour-cell apoptosis after cisplat in treatment is not telomere dependent. International Journal of Cancer, 2006, 118, 2727-2734.	5.1	14
108	Telomere length predicts poststroke mortality, dementia, and cognitive decline. Annals of Neurology, 2006, 60, 174-180.	5.3	235

#	Article	IF	CITATIONS
109	Fat Depot–Specific Characteristics Are Retained in Strains Derived From Single Human Preadipocytes. Diabetes, 2006, 55, 2571-2578.	0.6	207
110	Telomere length is associated with left ventricular function in the oldest old: the Newcastle 85+ study. European Heart Journal, 2006, 28, 172-176.	2.2	77
111	Telomere Shortening and Haemodialysis. Blood Purification, 2006, 24, 185-189.	1.8	35
112	Telomere length in white blood cells is not associated with morbidity or mortality in the oldest old: a population-based study. Aging Cell, 2005, 4, 287-290.	6.7	291
113	Science fact and the SENS agenda. EMBO Reports, 2005, 6, 1006-1008.	4.5	61
114	Mitochondria, telomeres and cell senescence. Experimental Gerontology, 2005, 40, 466-472.	2.8	125
115	Telomeres, cell senescence and human ageing. Signal Transduction, 2005, 5, 103-114.	0.4	17
116	The Role of Telomeres in Etoposide Induced Tumour Cell Death. Cell Cycle, 2004, 3, 1167-1174.	2.6	15
117	Stochastic Variation in Telomere Shortening Rate Causes Heterogeneity of Human Fibroblast Replicative Life Span. Journal of Biological Chemistry, 2004, 279, 17826-17833.	3.4	124
118	Relocalized redox-active lysosomal iron is an important mediator of oxidative-stress-induced DNA damage. Biochemical Journal, 2004, 378, 1039-1045.	3.7	97
119	Telomere shortening in human fibroblasts is not dependent on the size of the telomeric-3'-overhang. Aging Cell, 2004, 3, 103-109.	6.7	36
120	Stress Defense in Murine Embryonic Stem Cells Is Superior to That of Various Differentiated Murine Cells. Stem Cells, 2004, 22, 962-971.	3.2	253
121	Lysosomal Redox-Active Iron Is Important for Oxidative Stress-Induced DNA Damage. Annals of the New York Academy of Sciences, 2004, 1019, 285-288.	3.8	22
122	Replicative senescence and the art of counting. Experimental Gerontology, 2003, 38, 1259-1264.	2.8	62
123	MitoQ counteracts telomere shortening and elongates lifespan of fibroblasts under mild oxidative stress. Aging Cell, 2003, 2, 141-143.	6.7	192
124	A DNA damage checkpoint response in telomere-initiated senescence. Nature, 2003, 426, 194-198.	27.8	2,381
125	Immortalisation of human ovarian surface epithelium with telomerase and temperature-senstitive SV40 large T antigen. Experimental Cell Research, 2003, 288, 390-402.	2.6	57
126	Extracellular Superoxide Dismutase Is a Major Antioxidant in Human Fibroblasts and Slows Telomere Shortening. Journal of Biological Chemistry, 2003, 278, 6824-6830.	3.4	229

#	Article	IF	CITATIONS
127	Telomeric Damage in Aging. , 2003, , 121-129.		О
128	Human fibroblasts in vitro senesce with a donor-specific telomere length. FEBS Letters, 2002, 516, 71-74.	2.8	24
129	hTERT gene dosage correlates with telomerase activity in human lung cancer cell lines. Cancer Letters, 2002, 176, 81-91.	7.2	37
130	Oxidative stress shortens telomeres. Trends in Biochemical Sciences, 2002, 27, 339-344.	7.5	2,129
131	Replicative Aging, Telomeres, and Oxidative Stress. Annals of the New York Academy of Sciences, 2002, 959, 24-29.	3.8	231
132	Telomeres and replicative senescence: is it only length that counts?. Cancer Letters, 2001, 168, 111-116.	7.2	73
133	Accelerated telomere shortening in Fanconi anemia fibroblasts - a longitudinal study. FEBS Letters, 2001, 506, 22-26.	2.8	51
134	Ribozyme-mediated telomerase inhibition induces immediate cell loss but not telomere shortening in ovarian cancer cells. Cancer Gene Therapy, 2001, 8, 827-834.	4.6	101
135	Stress, DNA damage and ageing â€" an integrative approach. Experimental Gerontology, 2001, 36, 1049-1062.	2.8	182
136	BJ fibroblasts display high antioxidant capacity and slow telomere shortening independent of hTERT transfection. Free Radical Biology and Medicine, 2001, 31, 824-831.	2.9	69
137	Proteasome inhibition by lipofuscin/ceroid during postmitotic aging of fibroblasts. FASEB Journal, 2000, 14, 1490-1498.	0.5	269
138	Proteasome inhibition by lipofuscin/ceroid during postmitotic aging of fibroblasts. FASEB Journal, 2000, 14, 1490-1498.	0.5	242
139	Short Telomeres in Patients with Vascular Dementia: An Indicator of Low Antioxidative Capacity and a Possible Risk Factor?. Laboratory Investigation, 2000, 80, 1739-1747.	3.7	290
140	Research on ageing in Germany. Experimental Gerontology, 2000, 35, 259-270.	2.8	5
141	Accumulation of single-strand breaks is the major cause of telomere shortening in human fibroblasts. Free Radical Biology and Medicine, 2000, 28, 64-74.	2.9	479
142	Protein oxidation and degradation during proliferative senescence of human MRC-5 fibroblasts. Free Radical Biology and Medicine, 2000, 28, 701-708.	2.9	147
143	DNA Damage and Telomere Length in Human T Cells. Rejuvenation Research, 2000, 3, 383-388.	0.2	1
144	Protein oxidation and degradation during cellular senescence of human BJ fibroblasts: part lâ€" effects of proliferative senescence. FASEB Journal, 2000, 14, 2495-2502.	0.5	202

#	Article	IF	Citations
145	Role of Oxidative Stress in Telomere Length Regulation and Replicative Senescence. Annals of the New York Academy of Sciences, 2000, 908, 99-110.	3.8	369
146	Telomere Length As a Marker of Oxidative Stress in Primary Human Fibroblast Cultures. Annals of the New York Academy of Sciences, 2000, 908, 327-330.	3.8	87
147	Telomere shortening triggers a p53-dependent cell cycle arrest via accumulation of G-rich single stranded DNA fragments. Oncogene, 1999, 18, 5148-5158.	5.9	168
148	Telomeres: Influencing the Rate of Aging. Annals of the New York Academy of Sciences, 1998, 854, 318-327.	3.8	37
149	Similar Gene Expression Patterns in Senescent and Hyperoxically Blocked Fibroblasts. Annals of the New York Academy of Sciences, 1998, 854, 482-482.	3.8	O
150	Preferential Accumulation of Single-Stranded Regions in Telomeres of Human Fibroblasts. Experimental Cell Research, 1998, 239, 152-160.	2.6	380
151	Mild Hyperoxia Shortens Telomeres and Inhibits Proliferation of Fibroblasts: A Model for Senescence?. Experimental Cell Research, 1995, 220, 186-193.	2.6	781
152	The measurement of water distribution in frozen specimens. Journal of Microscopy, 1991, 161, 149-158.	1.8	10
153	Ensuring the Validity of Results in Biological X-Ray Microanalysis. Springer Series in Biophysics, 1989, , 47-58.	0.4	2
154	Xâ€ray microanalysis with continuous specimen cooling: is it necessary?. Journal of Microscopy, 1988, 151, 43-47.	1.8	12
155	The intracellular distribution of ions and water in rat liver and heart muscle. Journal of Microscopy, 1987, 146, 77-85.	1.8	27
156	Estimation of organelle water fractions from frozenâ€dried cryosections. Journal of Microscopy, 1987, 146, 67-75.	1.8	14
157	Intracellular water and ionic shifts during growth and ageing of rats. Mechanisms of Ageing and Development, 1987, 38, 179-187.	4.6	11
158	A mitochondrial membrane hypothesis of aging. Journal of Theoretical Biology, 1987, 127, 127-132.	1.7	23
159	Fast cryofixation technique for Xâ€ray microanalysis. Journal of Microscopy, 1986, 141, 79-90.	1.8	40
160	Quantitative Röntgenmikroanalyse biologischer Ultradünnschnitte mit Aluminium-Kohle-Aufdampfschichten als Standards. Acta Histochemica, 1983, 72, 195-201.	1.8	6