
Masaya Takahashi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5238116/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Klotho Inhibits Transforming Growth Factor-β1 (TGF-β1) Signaling and Suppresses Renal Fibrosis and Cancer Metastasis in Mice. Journal of Biological Chemistry, 2011, 286, 8655-8665.	3.4	453
2	Amide proton transfer imaging of adult diffuse gliomas: correlation with histopathological grades. Neuro-Oncology, 2014, 16, 441-448.	1.2	312
3	Klotho and Phosphate Are Modulators of Pathologic Uremic Cardiac Remodeling. Journal of the American Society of Nephrology: JASN, 2015, 26, 1290-1302.	6.1	231
4	Recombinant Î \pm -Klotho may be prophylactic and therapeutic for acute to chronic kidney disease progression and uremic cardiomyopathy. Kidney International, 2017, 91, 1104-1114.	5.2	193
5	In vivo chemical exchange saturation transfer imaging allows early detection of a therapeutic response in glioblastoma. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 4542-4547.	7.1	168
6	Assessment of Renal Fibrosis with Diffusion-weighted MR Imaging: Study with Murine Model of Unilateral Ureteral Obstruction. Radiology, 2010, 255, 772-780.	7.3	148
7	Grading diffuse gliomas without intense contrast enhancement by amide proton transfer MR imaging: comparisons with diffusion- and perfusion-weighted imaging. European Radiology, 2017, 27, 578-588.	4.5	90
8	Ultraâ€short echo time (UTE) MR imaging of the lung: Comparison between normal and emphysematous lungs in mutant mice. Journal of Magnetic Resonance Imaging, 2010, 32, 326-333.	3.4	87
9	Modulation of water exchange in Eu(III) DOTA–tetraamide complexes: considerations for <i>in vivo</i> imaging of PARACEST agents. Contrast Media and Molecular Imaging, 2009, 4, 183-191.	0.8	56
10	Characterization of Lung Cancer by Amide Proton Transfer (APT) Imaging: An In-Vivo Study in an Orthotopic Mouse Model. PLoS ONE, 2013, 8, e77019.	2.5	41
11	Scan–rescan reproducibility of parallel transmission based amide proton transfer imaging of brain tumors. Journal of Magnetic Resonance Imaging, 2015, 42, 1346-1353.	3.4	41
12	Amide Proton Transfer Imaging of Diffuse Gliomas: Effect of Saturation Pulse Length in Parallel Transmission-Based Technique. PLoS ONE, 2016, 11, e0155925.	2.5	30
13	Nanoparticle facilitated inhalational delivery of erythropoietin receptor cDNA protects against hyperoxic lung injury. Nanomedicine: Nanotechnology, Biology, and Medicine, 2016, 12, 811-821.	3.3	29
14	Thermo-responsive Fluorescent Nanoparticles for Multimodal Imaging and Treatment of Cancers. Nanotheranostics, 2020, 4, 1-13.	5.2	29
15	Phosphoprotein-based biomarkers as predictors for cancer therapy. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 18401-18411.	7.1	25
16	Molecular Platform for Design and Synthesis of Targeted Dual-Modality Imaging Probes. Bioconjugate Chemistry, 2015, 26, 549-558.	3.6	18
17	Threeâ€Ðimensional Shape and Surface Features Distinguish Multiple Sclerosis Lesions from Nonspecific White Matter Disease. Journal of Neuroimaging, 2017, 27, 613-619.	2.0	17
18	Fe Core–Carbon Shell Nanoparticles as Advanced MRI Contrast Enhancer. Journal of Functional Biomaterials, 2017, 8, 46.	4.4	6

#	Article	IF	CITATIONS
19	Laquinimod has no effects on brain volume or cellular CNS composition in the F1 3xTg-AD/C3H mouse model of Alzheimer's disease. Journal of Neuroimmunology, 2017, 309, 100-110.	2.3	5
20	Correlating Function and Imaging Measures of the Medial Longitudinal Fasciculus. PLoS ONE, 2016, 11, e0147863.	2.5	4
21	Presaturation Power Adjusted Pulsed CEST: A Method to Increase Independence of Target CEST Signals. Contrast Media and Molecular Imaging, 2018, 2018, 1-11.	0.8	2
22	Metabolic and cardiovascular effects of chronic mild hyperuricemia in rodents. Journal of Investigative Medicine, 2018, 66, 1037-1044.	1.6	1