## **Robert Desimone**

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5238015/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                          | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | The cortical connectome of primate lateral prefrontal cortex. Neuron, 2022, 110, 312-327.e7.                                                                     | 3.8  | 25        |
| 2  | Alpha Synchrony and the Neurofeedback Control of Spatial Attention. Neuron, 2020, 105, 577-587.e5.                                                               | 3.8  | 90        |
| 3  | Atypical behaviour and connectivity in SHANK3-mutant macaques. Nature, 2019, 570, 326-331.                                                                       | 13.7 | 172       |
| 4  | The role of prefrontal cortex in the control of feature attention in area V4. Nature Communications, 2019, 10, 5727.                                             | 5.8  | 46        |
| 5  | Enhanced Neural Processing by Covert Attention only during Microsaccades Directed toward the Attended Stimulus. Neuron, 2018, 99, 207-214.e3.                    | 3.8  | 87        |
| 6  | Alpha and gamma neurofeedback reinforce control of spatial attention. Journal of Vision, 2017, 17, 385.                                                          | 0.1  | 4         |
| 7  | Protein-retention expansion microscopy of cells and tissues labeled using standard fluorescent proteins and antibodies. Nature Biotechnology, 2016, 34, 987-992. | 9.4  | 510       |
| 8  | Opportunities and challenges in modeling human brain disorders in transgenic primates. Nature<br>Neuroscience, 2016, 19, 1123-1130.                              | 7.1  | 115       |
| 9  | Gamma-Rhythmic Gain Modulation. Neuron, 2016, 92, 240-251.                                                                                                       | 3.8  | 111       |
| 10 | Pulvinar-Cortex Interactions in Vision and Attention. Neuron, 2016, 89, 209-220.                                                                                 | 3.8  | 257       |
| 11 | Transcranial alternating current stimulation (tACS) reveals causal role of brain oscillations in visual attention. Journal of Vision, 2016, 16, 937.             | 0.1  | 4         |
| 12 | Custom-fit radiolucent cranial implants for neurophysiological recording and stimulation. Journal of Neuroscience Methods, 2015, 241, 146-154.                   | 1.3  | 29        |
| 13 | A Source for Feature-Based Attention in the Prefrontal Cortex. Neuron, 2015, 88, 832-844.                                                                        | 3.8  | 258       |
| 14 | Connectional subdivision of the claustrum: two visuotopic subdivisions in the macaque. Frontiers in<br>Systems Neuroscience, 2014, 8, 63.                        | 1.2  | 29        |
| 15 | Subcortical Projections of Area V2 in the Macaque. Journal of Cognitive Neuroscience, 2014, 26, 1220-1233.                                                       | 1.1  | 21        |
| 16 | Effect of Microstimulation of the Superior Colliculus on Visual Space Attention. Journal of Cognitive Neuroscience, 2014, 26, 1208-1219.                         | 1.1  | 8         |
| 17 | Stimulus repetition modulates gamma-band synchronization in primate visual cortex. Proceedings of the United States of America, 2014, 111, 3626-3631.            | 3.3  | 112       |
| 18 | Neural Mechanisms of Object-Based Attention. Science, 2014, 344, 424-427.                                                                                        | 6.0  | 445       |

| #  | Article                                                                                                                                                                             | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Subcortical connections of area V4 in the macaque. Journal of Comparative Neurology, 2014, 522, 1941-1965.                                                                          | 0.9 | 71        |
| 20 | Lesions of prefrontal cortex reduce attentional modulation of neuronal responses and synchrony in V4. Nature Neuroscience, 2014, 17, 1003-1011.                                     | 7.1 | 166       |
| 21 | A procedure for testing across-condition rhythmic spike-field association change. Journal of Neuroscience Methods, 2013, 213, 43-62.                                                | 1.3 | 18        |
| 22 | Attentional Modulation of Cell-Class-Specific Gamma-Band Synchronization in Awake Monkey Area V4.<br>Neuron, 2013, 80, 1077-1089.                                                   | 3.8 | 174       |
| 23 | Rhythmic neuronal synchronization in visual cortex entails spatial phase relation diversity that is modulated by stimulation and attention. NeuroImage, 2013, 74, 99-116.           | 2.1 | 36        |
| 24 | Cell-Type-Specific Synchronization of Neural Activity in FEF with V4 during Attention. Neuron, 2012, 73, 581-594.                                                                   | 3.8 | 217       |
| 25 | Feature-Based Attention in the Frontal Eye Field and Area V4 during Visual Search. Neuron, 2011, 70, 1205-1217.                                                                     | 3.8 | 190       |
| 26 | A High-Light Sensitivity Optical Neural Silencer: Development and Application to Optogenetic Control of Non-Human Primate Cortex. Frontiers in Systems Neuroscience, 2011, 5, 18.   | 1.2 | 421       |
| 27 | Stimulation of the nucleus accumbens as behavioral reward in awake behaving monkeys. Journal of Neuroscience Methods, 2011, 199, 265-272.                                           | 1.3 | 21        |
| 28 | Laminar differences in gamma and alpha coherence in the ventral stream. Proceedings of the National<br>Academy of Sciences of the United States of America, 2011, 108, 11262-11267. | 3.3 | 547       |
| 29 | Object decoding with attention in inferior temporal cortex. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 8850-8855.                  | 3.3 | 150       |
| 30 | A backward progression of attentional effects in the ventral stream. Proceedings of the National<br>Academy of Sciences of the United States of America, 2010, 107, 361-365.        | 3.3 | 252       |
| 31 | Neural synchrony and selective attention. , 2009, , .                                                                                                                               |     | 1         |
| 32 | A Microsaccadic Rhythm Modulates Gamma-Band Synchronization and Behavior. Journal of Neuroscience, 2009, 29, 9471-9480.                                                             | 1.7 | 202       |
| 33 | Attentional control during the transient updating of cue information. Brain Research, 2009, 1247, 149-158.                                                                          | 1.1 | 31        |
| 34 | The prefrontal cortex and the executive control of attention. Experimental Brain Research, 2009, 192, 489-497.                                                                      | 0.7 | 269       |
| 35 | Millisecond-Timescale Optical Control of Neural Dynamics in the Nonhuman Primate Brain. Neuron, 2009, 62, 191-198.                                                                  | 3.8 | 460       |
| 36 | Long-range neural coupling through synchronization with attention. Progress in Brain Research, 2009, 176, 35-45.                                                                    | 0.9 | 76        |

| #  | Article                                                                                                                                                                 | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | High-Frequency, Long-Range Coupling Between Prefrontal and Visual Cortex During Attention.<br>Science, 2009, 324, 1207-1210.                                            | 6.0  | 1,075     |
| 38 | Cortical Connections of Area V4 in the Macaque. Cerebral Cortex, 2008, 18, 477-499.                                                                                     | 1.6  | 274       |
| 39 | The Effects of Visual Stimulation and Selective Visual Attention on Rhythmic Neuronal Synchronization in Macaque Area V4. Journal of Neuroscience, 2008, 28, 4823-4835. | 1.7  | 379       |
| 40 | Prosthetic systems for therapeutic optical activation and silencing of genetically targeted neurons.<br>Proceedings of SPIE, 2008, 6854, 68540H.                        | 0.8  | 57        |
| 41 | Top–Down Attentional Deficits in Macaques with Lesions of Lateral Prefrontal Cortex. Journal of Neuroscience, 2007, 27, 11306-11314.                                    | 1.7  | 157       |
| 42 | Modulation of Neuronal Interactions Through Neuronal Synchronization. Science, 2007, 316, 1609-1612.                                                                    | 6.0  | 1,197     |
| 43 | Chapter 9 Finding a face in the crowd: parallel and serial neural mechanisms of visual selection.<br>Progress in Brain Research, 2006, 155, 147-156.                    | 0.9  | 34        |
| 44 | Gamma-band synchronization in visual cortex predicts speed of change detection. Nature, 2006, 439, 733-736.                                                             | 13.7 | 690       |
| 45 | Empirical mode decomposition: a method for analyzing neural data. Neurocomputing, 2005, 65-66, 801-807.                                                                 | 3.5  | 104       |
| 46 | Empirical mode decomposition of field potentials from macaque V4 in visual spatial attention.<br>Biological Cybernetics, 2005, 92, 380-392.                             | 0.6  | 73        |
| 47 | Parallel and Serial Neural Mechanisms for Visual Search in Macaque Area V4. Science, 2005, 308, 529-534.                                                                | 6.0  | 609       |
| 48 | Selectivity and sparseness in the responses of striate complex cells. Vision Research, 2005, 45, 57-73.                                                                 | 0.7  | 68        |
| 49 | Selective Visual Attention Modulates Oscillatory Neuronal Synchronization. , 2005, , 520-525.                                                                           |      | 3         |
| 50 | Impaired Filtering of Distracter Stimuli by TE Neurons following V4 and TEO Lesions in Macaques.<br>Cerebral Cortex, 2004, 15, 141-151.                                 | 1.6  | 34        |
| 51 | Temporal dynamics of attention-modulated neuronal synchronization in macaque V4.<br>Neurocomputing, 2003, 52-54, 481-487.                                               | 3.5  | 15        |
| 52 | Generalized deficits in visual selective attention after V4 and TEO lesions in macaques. European<br>Journal of Neuroscience, 2003, 18, 1671-1691.                      | 1.2  | 33        |
| 53 | From Humble Neural Beginnings Comes Knowledge of Numbers. Neuron, 2003, 37, 4-6.                                                                                        | 3.8  | 3         |
| 54 | Interacting Roles of Attention and Visual Salience in V4. Neuron, 2003, 37, 853-863.                                                                                    | 3.8  | 379       |

| #  | Article                                                                                                                                                            | IF        | CITATIONS     |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|---------------|
| 55 | Posterior parietal cortex and the filtering of distractors. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 4263-4268. | 3.3       | 145           |
| 56 | Impairments in Spatial Generalization of Visual Skills After V4 and TEO Lesions in Macaques (Macaca) Tj ETQqO O                                                    | 0 rgBT /C | verlock 10 Tf |
| 57 | Modulation of Oscillatory Neuronal Synchronization by Selective Visual Attention. Science, 2001, 291, 1560-1563.                                                   | 6.0       | 2,496         |
| 58 | Modulation of Sensory Suppression: Implications for Receptive Field Sizes in the Human Visual Cortex.<br>Journal of Neurophysiology, 2001, 86, 1398-1411.          | 0.9       | 252           |
| 59 | Contextual Modulation in Primary Visual Cortex of Macaques. Journal of Neuroscience, 2001, 21, 1698-1709.                                                          | 1.7       | 154           |
| 60 | Learning Increases Stimulus Salience in Anterior Inferior Temporal Cortex of the Macaque. Journal of Neurophysiology, 2001, 86, 290-303.                           | 0.9       | 78            |
| 61 | Attention Increases Sensitivity of V4 Neurons, Neuron, 2000, 26, 703-714,                                                                                          | 3.8       | 922           |

| 62 | Clustering of perirhinal neurons with similar properties following visual experience in adult monkeys. Nature Neuroscience, 2000, 3, 1143-1148. | 7.1 | 101 |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|
| 63 | Subcortical connections of area V4 in the macaque. Anais Da Academia Brasileira De Ciencias, 2000, 72, 443-444.                                 | 0.3 | 0   |

| 64 | Cortical connections of area V4 in the macaque. Anais Da Academia Brasileira De Ciencias, 2000, 72, 444-444.                                      | 0.3 | 0     |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------|-----|-------|
| 65 | Competitive Mechanisms Subserve Attention in Macaque Areas V2 and V4. Journal of Neuroscience, 1999, 19, 1736-1753.                               | 1.7 | 1,177 |
| 66 | Responses of Macaque Perirhinal Neurons during and after Visual Stimulus Association Learning.<br>Journal of Neuroscience, 1999, 19, 10404-10416. | 1.7 | 209   |
| 67 | Loss of attentional stimulus selection after extrastriate cortical lesions in macaques. Nature<br>Neuroscience, 1999, 2, 753-758.                 | 7.1 | 154   |
| 68 | Internal globus pallidus discharge is nearly suppressed during levodopa-induced dyskinesias. Annals of Neurology, 1999, 46, 732-738.              | 2.8 | 168   |

| 69 | Increased Activity in Human Visual Cortex during Directed Attention in the Absence of Visual Stimulation. Neuron, 1999, 22, 751-761. | 3.8 | 1,508 |
|----|--------------------------------------------------------------------------------------------------------------------------------------|-----|-------|
| 70 | The Role of Neural Mechanisms of Attention in Solving the Binding Problem. Neuron, 1999, 24, 19-29.                                  | 3.8 | 325   |
| 71 | Cognitive neuroscience. Current Opinion in Neurobiology, 1998, 8, 175-177.                                                           | 2.0 | 3     |

Perceptual filling-in: a parametric study. Vision Research, 1998, 38, 2721-2734. 0.7 156

| #  | Article                                                                                                                                                                      | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | Visual attention mediated by biased competition in extrastriate visual cortex. Philosophical Transactions of the Royal Society B: Biological Sciences, 1998, 353, 1245-1255. | 1.8  | 587       |
| 74 | Mechanisms of Directed Attention in the Human Extrastriate Cortex as Revealed by Functional MRI. ,<br>1998, 282, 108-111.                                                    |      | 821       |
| 75 | Responses of Neurons in Inferior Temporal Cortex During Memory-Guided Visual Search. Journal of Neurophysiology, 1998, 80, 2918-2940.                                        | 0.9  | 630       |
| 76 | Attention control og visual perception. Electroencephalography and Clinical Neurophysiology, 1997,<br>102, P4.                                                               | 0.3  | 2         |
| 77 | Object and Place Memory in the Macaque Entorhinal Cortex. Journal of Neurophysiology, 1997, 78, 1062-1081.                                                                   | 0.9  | 346       |
| 78 | Neural Mechanisms of Spatial Selective Attention in Areas V1, V2, and V4 of Macaque Visual Cortex.<br>Journal of Neurophysiology, 1997, 77, 24-42.                           | 0.9  | 1,507     |
| 79 | Neural Mechanisms of Visual Working Memory in Prefrontal Cortex of the Macaque. Journal of<br>Neuroscience, 1996, 16, 5154-5167.                                             | 1.7  | 1,363     |
| 80 | Cue-dependent deficits in grating orientation discrimination after V4 lesions in macaques. Visual<br>Neuroscience, 1996, 13, 529-538.                                        | 0.5  | 132       |
| 81 | ATTENTION CONTROL OF VISUAL PERCEPTION. Journal of Clinical Neurophysiology, 1996, 13, 349-350.                                                                              | 0.9  | 0         |
| 82 | Is dopamine a missing link?. Nature, 1995, 376, 549-550.                                                                                                                     | 13.7 | 62        |
| 83 | Responses of cells in monkey visual cortex during perceptual filling-in of an artificial scotoma.<br>Nature, 1995, 377, 731-734.                                             | 13.7 | 290       |
| 84 | Neural Mechanisms of Selective Visual Attention. Annual Review of Neuroscience, 1995, 18, 193-222.                                                                           | 5.0  | 7,228     |
| 85 | Inferior Temporal Mechanisms for Invariant Object Recognition. Cerebral Cortex, 1994, 4, 523-531.                                                                            | 1.6  | 204       |
| 86 | A neural basis for visual search in inferior temporal cortex. Nature, 1993, 363, 345-347.                                                                                    | 13.7 | 1,257     |
| 87 | Memory-guided attentional systems. Spatial Vision, 1993, 7, 85.                                                                                                              | 1.4  | 0         |
| 88 | A role for the corpus callosum in visual area V4 of the macaque. Visual Neuroscience, 1993, 10, 159-171.                                                                     | 0.5  | 76        |
| 89 | Comparison of subcortical connections of inferior temporal and posterior parietal cortex in monkeys. Visual Neuroscience, 1993, 10, 59-72.                                   | 0.5  | 181       |
| 90 | Scopolamine affects short-term memory but not inferior temporal neurons. NeuroReport, 1993, 4, 81.                                                                           | 0.6  | 59        |

6

| #   | Article                                                                                                                                                                                                         | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Subcortical connections of visual areas MST and FST in macaques. Visual Neuroscience, 1992, 9, 291-302.                                                                                                         | 0.5 | 128       |
| 92  | Neural mechanisms of attention and memory in extrastriate cortex. Neuroscience Research<br>Supplement: the Official Journal of the Japan Neuroscience Society, 1991, 16, X.                                     | 0.0 | 1         |
| 93  | Visual topography of area TEO in the macaque. Journal of Comparative Neurology, 1991, 306, 554-575.                                                                                                             | 0.9 | 434       |
| 94  | Face-Selective Cells in the Temporal Cortex of Monkeys. Journal of Cognitive Neuroscience, 1991, 3, 1-8.                                                                                                        | 1.1 | 504       |
| 95  | Complexity at the neuronal level. Behavioral and Brain Sciences, 1990, 13, 446-446.                                                                                                                             | 0.4 | 4         |
| 96  | Pathways for motion analysis: Cortical connections of the medial superior temporal and fundus of<br>the superior temporal visual areas in the macaque. Journal of Comparative Neurology, 1990, 296,<br>462-495. | 0.9 | 627       |
| 97  | Organization of visual cortical inputs to the striatum and subsequent outputs to the pallido-nigral complex in the monkey. Journal of Comparative Neurology, 1990, 298, 129-156.                                | 0.9 | 304       |
| 98  | Neural Mechanisms of Attention in Extrastriate Cortex of Monkeys. Research Notes in Neural<br>Computing, 1989, , 169-182.                                                                                       | 0.1 | 7         |
| 99  | Projections to the superior temporal sulcus from the central and peripheral field representations of V1 and V2. Journal of Comparative Neurology, 1986, 248, 147-163.                                           | 0.9 | 175       |
| 100 | Multiple visual areas in the caudal superior temporal sulcus of the macaque. Journal of Comparative Neurology, 1986, 248, 164-189.                                                                              | 0.9 | 562       |
| 101 | Cortical connections of visual area MT in the macaque. Journal of Comparative Neurology, 1986, 248, 190-222.                                                                                                    | 0.9 | 885       |
| 102 | Contour, color and shape analysis beyond the striate cortex. Vision Research, 1985, 25, 441-452.                                                                                                                | 0.7 | 538       |
| 103 | Form, Color, and Motion Analysis in Prestriate Cortex of the Macaque. Experimental Brain Research<br>Supplementum, 1985, , 165-178.                                                                             | 1.0 | 1         |
| 104 | Subcortical projections of area MT in the macaque. Journal of Comparative Neurology, 1984, 223, 368-386.                                                                                                        | 0.9 | 242       |
| 105 | PROPERTIES OF INFERIOR TEMPORAL NEURONS IN THE MACAQUE. , 1981, , 287-289.                                                                                                                                      |     | 0         |
| 106 | Prestriate afferents to inferior temporal cortex: an HRP study. Brain Research, 1980, 184, 41-55.                                                                                                               | 1.1 | 169       |
| 107 | Visual areas in the temporal cortex of the macaque. Brain Research, 1979, 178, 363-380.                                                                                                                         | 1.1 | 538       |