Erdem Karatekin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5236279/publications.pdf

Version: 2024-02-01

31 papers

1,655 citations

³⁹⁴⁴²¹ 19 h-index 30 g-index

45 all docs

45 docs citations

45 times ranked 2005 citing authors

#	Article	IF	CITATIONS
1	Rapid propagation of membrane tension at retinal bipolar neuron presynaptic terminals. Science Advances, 2022, 8, eabl4411.	10.3	22
2	Stepwise membrane binding of extended synaptotagmins revealed by optical tweezers. Nature Chemical Biology, 2022, 18, 313-320.	8.0	21
3	Polybasic Patches in Both C2 Domains of Synaptotagmin-1 Are Required for Evoked Neurotransmitter Release. Journal of Neuroscience, 2022, 42, 5816-5829.	3.6	10
4	Sorting sub-150-nm liposomes of distinct sizes by DNA-brick-assisted centrifugation. Nature Chemistry, 2021, 13, 335-342.	13.6	34
5	FisB relies on homo-oligomerization and lipid binding to catalyze membrane fission in bacteria. PLoS Biology, 2021, 19, e3001314.	5.6	9
6	The neuronal calcium sensor Synaptotagmin-1 and SNARE proteins cooperate to dilate fusion pores. ELife, 2021, 10, .	6.0	29
7	A human apolipoprotein L with detergent-like activity kills intracellular pathogens. Science, 2021, 373, .	12.6	50
8	Optimal Detection of Fusion Pore Dynamics Using Polarized Total Internal Reflection Fluorescence Microscopy. Frontiers in Molecular Biosciences, 2021, 8, 740408.	3.5	4
9	Retromer forms low order oligomers on supported lipid bilayers. Journal of Biological Chemistry, 2020, 295, 12305-12316.	3.4	13
10	DNA-Origami-Based Fluorescence Brightness Standards for Convenient and Fast Protein Counting in Live Cells. Nano Letters, 2020, 20, 8890-8896.	9.1	8
11	Leukocyte Cytoskeleton Polarization Is Initiated by Plasma Membrane Curvature from Cell Attachment. Developmental Cell, 2019, 49, 206-219.e7.	7.0	27
12	A Nanodisc-Cell Fusion Assay with Single-Pore Sensitivity and Sub-millisecond Time Resolution. Methods in Molecular Biology, 2019, 1860, 263-275.	0.9	4
13	<scp>FEBS</scp> Letters Special Issue on Exocytosis and Endocytosis. FEBS Letters, 2018, 592, 3477-3479.	2.8	O
14	Toward a unified picture of the exocytotic fusion pore. FEBS Letters, 2018, 592, 3563-3585.	2.8	19
15	Entropic forces drive self-organization and membrane fusion by SNARE proteins. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 5455-5460.	7.1	61
16	Single-molecule force spectroscopy of protein-membrane interactions. ELife, 2017, 6, .	6.0	59
17	Regulation of Exocytotic Fusion Pores by SNARE Protein Transmembrane Domains. Frontiers in Molecular Neuroscience, 2017, 10, 315.	2.9	33
18	Dilation of fusion pores by crowding of SNARE proteins. ELife, 2017, 6, .	6.0	57

#	Article	IF	CITATIONS
19	Nanodisc-cell fusion: control of fusion pore nucleation and lifetimes by SNARE protein transmembrane domains. Scientific Reports, 2016, 6, 27287.	3.3	39
20	Cholesterol Increases the Openness of SNARE-Mediated Flickering Fusion Pores. Biophysical Journal, 2016, 110, 1538-1550.	0.5	58
21	SNARE-mediated Fusion of Single Proteoliposomes with Tethered Supported Bilayers in a Microfluidic Flow Cell Monitored by Polarized TIRF Microscopy. Journal of Visualized Experiments, 2016, , .	0.3	7
22	A Programmable DNA Origami Platform to Organize SNAREs for Membrane Fusion. Journal of the American Chemical Society, 2016, 138, 4439-4447.	13.7	78
23	Three Myosins Contribute Uniquely to the Assembly and Constriction of the Fission Yeast Cytokinetic Contractile Ring. Current Biology, 2015, 25, 1955-1965.	3.9	85
24	Mechanism of Cytokinetic Contractile Ring Constriction in Fission Yeast. Developmental Cell, 2014, 29, 547-561.	7.0	127
25	FisB mediates membrane fission during sporulation in <i>Bacillus subtilis</i> . Genes and Development, 2013, 27, 322-334.	5.9	47
26	Fusion of single proteoliposomes with planar, cushioned bilayers in microfluidic flow cells. Nature Protocols, 2012, 7, 903-920.	12.0	41
27	Interactive, Computer-Assisted Tracking of Speckle Trajectories in Fluorescence Microscopy: Application to Actin Polymerization and Membrane Fusion. Biophysical Journal, 2011, 101, 1794-1804.	0.5	77
28	A fast, single-vesicle fusion assay mimics physiological SNARE requirements. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 3517-3521.	7.1	125
29	Model of SNARE-Mediated Membrane Adhesion Kinetics. PLoS ONE, 2009, 4, e6375.	2.5	4
30	Analysis of Transient Behavior in Complex Trajectories: Application to Secretory Vesicle Dynamics. Biophysical Journal, 2006, 91, 3542-3559.	0.5	141
31	Cascades of Transient Pores in Giant Vesicles: Line Tension and Transport. Biophysical Journal, 2003, 84, 1734-1749.	0.5	349