Shyamal Mosalaganti

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5236194/publications.pdf

Version: 2024-02-01

623734 1058476 2,029 16 14 14 citations h-index g-index papers 24 24 24 3541 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	In situ structural analysis of SARS-CoV-2 spike reveals flexibility mediated by three hinges. Science, 2020, 370, 203-208.	12.6	531
2	In situ structural analysis of the human nuclear pore complex. Nature, 2015, 526, 140-143.	27.8	361
3	Molecular architecture of the inner ring scaffold of the human nuclear pore complex. Science, 2016, 352, 363-365.	12.6	284
4	Al-based structure prediction empowers integrative structural analysis of human nuclear pores. Science, 2022, 376, .	12.6	136
5	Proteasomes tether to two distinct sites at the nuclear pore complex. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 13726-13731.	7.1	123
6	Modular Assembly of RWD Domains on the Mis12 Complex Underlies Outer Kinetochore Organization. Molecular Cell, 2014, 53, 591-605.	9.7	116
7	In situ architecture of the algal nuclear pore complex. Nature Communications, 2018, 9, 2361.	12.8	107
8	Selective autophagy degrades nuclear pore complexes. Nature Cell Biology, 2020, 22, 159-166.	10.3	86
9	Structure of the RZZ complex and molecular basis of its interaction with Spindly. Journal of Cell Biology, 2017, 216, 961-981.	5.2	65
10	Benchmarking tomographic acquisition schemes for high-resolution structural biology. Nature Communications, 2020, 11, 876.	12.8	49
11	Insights from the reconstitution of the divergent outer kinetochore of <i>Drosophila melanogaster</i> . Open Biology, 2016, 6, 150236.	3.6	41
12	Three-dimensional superresolution fluorescence microscopy maps the variable molecular architecture of the nuclear pore complex. Molecular Biology of the Cell, 2021, 32, 1523-1533.	2.1	37
13	From the resolution revolution to evolution: structural insights into the evolutionary relationships between vesicle coats and the nuclear pore. Current Opinion in Structural Biology, 2018, 52, 32-40.	5 . 7	21
14	Structural impact of K63 ubiquitin on yeast translocating ribosomes under oxidative stress. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 22157-22166.	7.1	21
15	Quality over quantity: Achieving Better Resolution in Subtomogram Averaging Using Less particles. Microscopy and Microanalysis, 2020, 26, 2514-2514.	0.4	O
16	Strategies for single-particle cryo-electron microscopy studies of small integral membrane proteins. Biophysical Journal, 2022, 121, 343a.	0.5	O