
Noah F Shroyer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5236020/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Ontogeny and function of the circadian clock in intestinal organoids. EMBO Journal, 2022, 41, e106973.	7.8	24
2	Evaluation of Murine Host Sex as a Biological Variable in Transplanted Human Intestinal Organoid Development. Digestive Diseases and Sciences, 2022, , 1.	2.3	1
3	Vitamin D Receptor Gene Single Nucleotide Polymorphisms and Association With Vitamin D Levels and Endoscopic Disease Activity in Inflammatory Bowel Disease Patients: A Pilot Study. Inflammatory Bowel Diseases, 2021, 27, 1263-1269.	1.9	6
4	Analysis of 1,25-Dihydroxyvitamin D ₃ Genomic Action Reveals Calcium-Regulating and Calcium-Independent Effects in Mouse Intestine and Human Enteroids. Molecular and Cellular Biology, 2021, 41, .	2.3	18
5	InÂVivo Transplantation of Human Intestinal Organoids Enhances Select Tight Junction Gene Expression. Journal of Surgical Research, 2021, 259, 500-508.	1.6	6
6	Human-Derived Bifidobacterium dentium Modulates the Mammalian Serotonergic System and Gut–Brain Axis. Cellular and Molecular Gastroenterology and Hepatology, 2021, 11, 221-248.	4.5	73
7	Enteropathogenic Escherichia coli Infection in Cancer and Immunosuppressed Patients. Clinical Infectious Diseases, 2021, 72, e620-e629.	5.8	9
8	Telomere dysfunction instigates inflammation in inflammatory bowel disease. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	28
9	Effect of substrate stiffness on human intestinal enteroids' infectivity by enteroaggregative Escherichia coli. Acta Biomaterialia, 2021, 132, 245-259.	8.3	6
10	Drivers of transcriptional variance in human intestinal epithelial organoids. Physiological Genomics, 2021, 53, 486-508.	2.3	17
11	Vitamin D and the intestine: Review and update. Journal of Steroid Biochemistry and Molecular Biology, 2020, 196, 105501.	2.5	37
12	Enteroaggregative E. coli Adherence to Human Heparan Sulfate Proteoglycans Drives Segment and Host Specific Responses to Infection. PLoS Pathogens, 2020, 16, e1008851.	4.7	24
13	Telomere dysfunction activates YAP1 to drive tissue inflammation. Nature Communications, 2020, 11, 4766.	12.8	42
14	Paneth cells promote angiogenesis and regulate portal hypertensionÂin response to microbial signals. Journal of Hepatology, 2020, 73, 628-639.	3.7	16
15	In Vitro Models of the Small Intestine: Engineering Challenges and Engineering Solutions. Tissue Engineering - Part B: Reviews, 2020, 26, 313-326.	4.8	30
16	Title is missing!. , 2020, 16, e1008851.		0
17	Title is missing!. , 2020, 16, e1008851.		0

2

#	Article	IF	CITATIONS
19	Title is missing!. , 2020, 16, e1008851.		Ο
20	Cellular Plasticity of Defa4-Expressing Paneth Cells in Response to Notch Activation and Intestinal Injury. Cellular and Molecular Gastroenterology and Hepatology, 2019, 7, 533-554.	4.5	69
21	<i>Growth Factor–Independent 1</i> Is a Tumor Suppressor Gene in Colorectal Cancer. Molecular Cancer Research, 2019, 17, 697-708.	3.4	34
22	An Organoid-Based Preclinical Model of Human Gastric Cancer. Cellular and Molecular Gastroenterology and Hepatology, 2019, 7, 161-184.	4.5	97
23	Epithelial WNT Ligands Are Essential Drivers of Intestinal Stem Cell Activation. Cell Reports, 2018, 22, 1003-1015.	6.4	54
24	Sox4 Promotes Atoh1-Independent Intestinal Secretory Differentiation Toward Tuft and Enteroendocrine Fates. Gastroenterology, 2018, 155, 1508-1523.e10.	1.3	66
25	A Method for Cryogenic Preservation of Human Biopsy Specimens andÂSubsequent OrganoidÂCulture. Cellular and Molecular Gastroenterology and Hepatology, 2018, 6, 218-222.e7.	4.5	76
26	WNT Signaling in the Intestine: Development, Homeostasis, Disease. , 2018, , 185-196.		2
27	Transcriptional Regulation by ATOH1 and its Target SPDEF inÂtheÂIntestine. Cellular and Molecular Gastroenterology and Hepatology, 2017, 3, 51-71.	4.5	62
28	Using primary murine intestinal enteroids to study dietary TAG absorption, lipoprotein synthesis, and the role of apoC-III in the intestine. Journal of Lipid Research, 2017, 58, 853-865.	4.2	31
29	SPDEF Induces Quiescence of Colorectal Cancer Cells byÂChanging the Transcriptional Targets of β-catenin. Gastroenterology, 2017, 153, 205-218.e8.	1.3	34
30	Differentiation of Human Pluripotent Stem Cells into Colonic Organoids via Transient Activation of BMP Signaling. Cell Stem Cell, 2017, 21, 51-64.e6.	11.1	198
31	Engineering bacterial thiosulfate and tetrathionate sensors for detecting gut inflammation. Molecular Systems Biology, 2017, 13, 923.	7.2	194
32	The ErbB3 receptor tyrosine kinase negatively regulates Paneth cells by PI3K-dependent suppression of Atoh1. Cell Death and Differentiation, 2017, 24, 855-865.	11.2	31
33	Organogenesis of the Gastrointestinal Tract. , 2017, , 861-870.e2.		Ο
34	Tumor Organoids Fill the Niche. Cell Stem Cell, 2016, 18, 686-687.	11.1	31
35	Characterization of stem/progenitor cell cycle using murine circumvallate papilla taste bud organoid. Scientific Reports, 2015, 5, 17185.	3.3	54
36	Establishment of Human Epithelial Enteroids and Colonoids from Whole Tissue and Biopsy. Journal of Visualized Experiments, 2015, , .	0.3	96

#	Article	IF	CITATIONS
37	The use of murineâ€derived fundic organoids in studies of gastric physiology. Journal of Physiology, 2015, 593, 1809-1827.	2.9	98
38	Selenoprotein P influences colitis-induced tumorigenesis by mediating stemness and oxidative damage. Journal of Clinical Investigation, 2015, 125, 2646-2660.	8.2	87
39	Transcriptome-wide Analysis Reveals Hallmarks of Human Intestine Development and Maturation InÂVitro and InÂVivo. Stem Cell Reports, 2015, 4, 1140-1155.	4.8	201
40	Interleukin-22 promotes intestinal-stem-cell-mediated epithelial regeneration. Nature, 2015, 528, 560-564.	27.8	818
41	Activated STAT5 Confers Resistance to Intestinal Injury by Increasing Intestinal Stem Cell Proliferation and Regeneration. Stem Cell Reports, 2015, 4, 209-225.	4.8	76
42	Krüpple-Like Factor 5 Is Required for Proper Maintenance of Adult Intestinal Crypt Cellular Proliferation. Digestive Diseases and Sciences, 2015, 60, 86-100.	2.3	11
43	The transcriptional corepressor MTGR1 regulates intestinal secretory lineage allocation. FASEB Journal, 2015, 29, 786-795.	0.5	13
44	Glutamine and alanyl-glutamine promote crypt expansion and mTOR signaling in murine enteroids. American Journal of Physiology - Renal Physiology, 2015, 308, G831-G839.	3.4	47
45	Somatic stem cell heterogeneity: diversity in the blood, skin and intestinal stem cell compartments. Nature Reviews Molecular Cell Biology, 2015, 16, 299-309.	37.0	142
46	<i>Helicobacter pylori</i> targets cancer-associated apical-junctional constituents in gastroids and gastric epithelial cells. Gut, 2015, 64, 720-730.	12.1	127
47	Biology of Intestinal Epithelial Stem Cells. , 2015, , 55-99.		0
48	Robust circadian rhythms in organoid cultures from PERIOD2::LUCIFERASE mouse small intestine. DMM Disease Models and Mechanisms, 2014, 7, 1123-30.	2.4	38
49	An in vivo model of human small intestine using pluripotent stem cells. Nature Medicine, 2014, 20, 1310-1314.	30.7	490
50	Indian Hedgehog Mediates Gastrin-Induced Proliferation in Stomach of Adult Mice. Gastroenterology, 2014, 147, 655-666.e9.	1.3	39
51	Intestinal stem cells remain viable after prolonged tissue storage. Cell and Tissue Research, 2013, 354, 441-450.	2.9	16
52	SPDEF Functions as a Colorectal Tumor Suppressor by Inhibiting β-Catenin Activity. Gastroenterology, 2013, 144, 1012-1023.e6.	1.3	40
53	Kruppel-like factor 5 controls villus formation and initiation of cytodifferentiation in the embryonic intestinal epithelium. Developmental Biology, 2013, 375, 128-139.	2.0	38
54	Notch in the Intestine: Regulation of Homeostasis and Pathogenesis. Annual Review of Physiology, 2013, 75, 263-288.	13.1	143

#	Article	IF	CITATIONS
55	Establishment of Gastrointestinal Epithelial Organoids. Current Protocols in Mouse Biology, 2013, 3, 217-240.	1.2	253
56	Antenatal ureaplasma infection impairs development of the fetal ovine gut in an IL-1-dependent manner. Mucosal Immunology, 2013, 6, 547-556.	6.0	48
57	Functional intestinal stem cells after Paneth cell ablation induced by the loss of transcription factor Math1 (Atoh1). Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 8965-8970.	7.1	273
58	Stem Cell-Derived Human Intestinal Organoids as an Infection Model for Rotaviruses. MBio, 2012, 3, e00159-12.	4.1	216
59	Intestinal crypts reproducibly expand in culture. Journal of Surgical Research, 2012, 178, 48-54.	1.6	57
60	Enterocyte STAT5 promotes mucosal wound healing via suppression of myosin light chain kinaseâ€nediated loss of barrier function and inflammation. EMBO Molecular Medicine, 2012, 4, 109-124.	6.9	64
61	Insulin Concentration Modulates Hepatic Lipid Accumulation in Mice in Part via Transcriptional Regulation of Fatty Acid Transport Proteins. PLoS ONE, 2012, 7, e38952.	2.5	25
62	GATA Factors Regulate Proliferation, Differentiation, and Gene Expression in Small Intestine of Mature Mice. Gastroenterology, 2011, 140, 1219-1229.e2.	1.3	91
63	Paneth cells constitute the niche for Lgr5 stem cells in intestinal crypts. Nature, 2011, 469, 415-418.	27.8	2,054
64	Directed differentiation of human pluripotent stem cells into intestinal tissue in vitro. Nature, 2011, 470, 105-109.	27.8	1,594
65	Intestinal development and differentiation. Experimental Cell Research, 2011, 317, 2702-2710.	2.6	284
66	Anatomy and Physiology of the Small and Large Intestines. , 2011, , 324-336.e2.		15
67	NOTCH Signaling and ATOH1 in Colorectal Cancers. Current Colorectal Cancer Reports, 2011, 7, 121-127.	0.5	34
68	Vertebrate intestinal endoderm development. Developmental Dynamics, 2011, 240, 501-520.	1.8	157
69	Interleukin-13 (IL-13)/IL-13 Receptor α1 (IL-13Rα1) Signaling Regulates Intestinal Epithelial Cystic Fibrosis Transmembrane Conductance Regulator Channel-dependent Clâ" Secretion. Journal of Biological Chemistry, 2011, 286, 13357-13369.	3.4	48
70	Complex interplay between Â-catenin signalling and Notch effectors in intestinal tumorigenesis. Gut, 2011, 60, 166-176.	12.1	127
71	Distinct ATOH1 and Neurog3 requirements define tuft cells as a new secretory cell type in the intestinal epithelium. Journal of Cell Biology, 2011, 192, 767-780.	5.2	337
72	Gfi1–cells and circuits: unraveling transcriptional networks of development and disease. Current Opinion in Hematology, 2010, 17, 300-307.	2.5	58

#	Article	IF	CITATIONS
73	SAM pointed domain ETS factor (SPDEF) regulates terminal differentiation and maturation of intestinal goblet cells. Experimental Cell Research, 2010, 316, 452-465.	2.6	160
74	268 Atonal Homolog 1 (ATOH1) is Essential for Growth and Differentiation Effects of Notch/γ Secretase Inhibitors on Normal and Cancerous Intestinal Epithelial Cells. Gastroenterology, 2010, 138, S-50.	1.3	2
75	Atonal Homolog 1 Is Required for Growth and Differentiation Effects of Notch/γ-Secretase Inhibitors on Normal and Cancerous Intestinal Epithelial Cells. Gastroenterology, 2010, 139, 918-928.e6.	1.3	76
76	Intestinal adaptation after ileal interposition surgery increases bile acid recycling and protects against obesity-related comorbidities. American Journal of Physiology - Renal Physiology, 2010, 299, G652-G660.	3.4	136
77	Atonal homolog 1 Is a Tumor Suppressor Gene. PLoS Biology, 2009, 7, e1000039.	5.6	103
78	Intestine-Specific Ablation of Mouse atonal homolog 1 (Math1) Reveals a Role in Cellular Homeostasis. Gastroenterology, 2007, 132, 2478-2488.	1.3	258
79	BMP Signaling in the Intestine: Cross-Talk Is Key. Gastroenterology, 2007, 133, 1035-1038.	1.3	18
80	Identification of Epithelial Gaps in Human Small and Large Intestine by Confocal Endomicroscopy. Gastroenterology, 2007, 133, 1769-1778.	1.3	204
81	Gfi1 functions downstream of Math1 to control intestinal secretory cell subtype allocation and differentiation. Genes and Development, 2005, 19, 2412-2417.	5.9	267
82	AnABCA4 genomic deletion in patients with Stargardt disease. Human Mutation, 2003, 21, 636-644.	2.5	38
83	Analysis of the ABCR (ABCA4) gene in 4-aminoquinoline retinopathy: is retinal toxicity by chloroquine and hydroxychloroquine related to Stargardt disease?. American Journal of Ophthalmology, 2001, 131, 761-766.	3.3	105
84	Cosegregation and functional analysis of mutant ABCR (ABCA4) alleles in families that manifest both Stargardt disease and age-related macular degeneration. Human Molecular Genetics, 2001, 10, 2671-2678.	2.9	110
85	Late-onset Stargardt disease is associated with missense mutations that map outside known functional regions of ABCR (ABCA4). Human Genetics, 2001, 108, 346-355.	3.8	124
86	Fundus albipunctatus and retinitis punctata albescens in a pedigree with an R150Q mutation in RLBP1. Clinical Genetics, 2001, 59, 424-429.	2.0	64
87	Genotype/Phenotype Analysis of a Photoreceptor-Specific ATP-Binding Cassette Transporter Gene, ABCR, in Stargardt Disease. American Journal of Human Genetics, 1999, 64, 422-434.	6.2	277
88	The rod photoreceptor ATP-binding cassette transporter gene, ABCR, and retinal disease: from monogenic to multifactorial. Vision Research, 1999, 39, 2537-2544.	1.4	108
89	Mutation of the Stargardt Disease Gene (<i>ABCR</i>) in Age-Related Macular Degeneration. Science, 1997, 277, 1805-1807.	12.6	844
90	A photoreceptor cell-specific ATP-binding transporter gene (ABCR) is mutated in recessive Starqardt macular dystrophy. Nature Genetics, 1997, 15, 236-246.	21.4	1,277