Sadhak Sengupta

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5235635/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Significance of interleukin-13 receptor alpha 2-targeted glioblastoma therapy. Neuro-Oncology, 2014, 16, 1304-1312.	1.2	131
2	Suppression of Human Glioma Xenografts with Second-Generation IL13R-Specific Chimeric Antigen Receptor–Modified T Cells. Clinical Cancer Research, 2012, 18, 5949-5960.	7.0	124
3	Thymus-derived rather than tumor-induced regulatory T cells predominate in brain tumors. Neuro-Oncology, 2011, 13, 1308-1323.	1.2	106
4	Impact of Temozolomide on Immune Response during Malignant Glioma Chemotherapy. Clinical and Developmental Immunology, 2012, 2012, 1-7.	3.3	100
5	Mechanisms of Immune Evasion by Gliomas. Advances in Experimental Medicine and Biology, 2012, 746, 53-76.	1.6	93
6	Bone Marrow Mesenchymal Stem Cells Loaded With an Oncolytic Adenovirus Suppress the Anti-adenoviral Immune Response in the Cotton Rat Model. Molecular Therapy, 2010, 18, 1846-1856.	8.2	70
7	Mesenchymal Stem Cells Modified with a Single-Chain Antibody against EGFRvIII Successfully Inhibit the Growth of Human Xenograft Malignant Glioma. PLoS ONE, 2010, 5, e9750.	2.5	67
8	The Presence of IL-17A and T Helper 17 Cells in Experimental Mouse Brain Tumors and Human Glioma. PLoS ONE, 2010, 5, e15390.	2.5	51
9	Short Hairpin RNA-Mediated Fibronectin Knockdown Delays Tumor Growth in a Mouse Glioma Model. Neoplasia, 2010, 12, 837-847.	5.3	50
10	Interleukin-13 Receptor Alpha 2-Targeted Glioblastoma Immunotherapy. BioMed Research International, 2014, 2014, 1-8.	1.9	40
11	Challenges in Clinical Design of Immunotherapy Trials for Malignant Glioma. Neurosurgery Clinics of North America, 2010, 21, 201-214.	1.7	39
12	Glycogen synthase kinase 3 inhibition lowers PD-1 expression, promotes long-term survival and memory generation in antigen-specific CAR-T cells. Cancer Letters, 2018, 433, 131-139.	7.2	37
13	Unrestrained Glycogen Synthase Kinase-3β Activity Leads to Activated T Cell Death and Can Be Inhibited by Natural Adjuvant. Journal of Immunology, 2007, 178, 6083-6091.	0.8	24
14	Development of a Function-Blocking Antibody Against Fibulin-3 as a Targeted Reagent for Glioblastoma. Clinical Cancer Research, 2018, 24, 821-833.	7.0	21
15	Adjuvant-induced survival signaling in clonally expanded T cells is associated with transient increases in pAkt levels and sustained uptake of glucose. Immunobiology, 2005, 210, 647-659.	1.9	13
16	Enhanced Transduction and Replication of RGD-Fiber Modified Adenovirus in Primary T Cells. PLoS ONE, 2011, 6, e18091.	2.5	10
17	Adjuvant Induced Glucose Uptake by Activated T Cells is not Correlated with Increased Survival. Advances in Experimental Medicine and Biology, 2008, 614, 65-72.	1.6	5
18	IMST-05. NOVEL CAR-T CELLS TARGETING THE EXTRACELLULAR MATRIX OF GLIOBLASTOMA INDUCE STRONG ANTI-TUMOR IMMUNE RESPONSE. Neuro-Oncology, 2016, 18, vi86-vi87.	1.2	0

#	Article	IF	CITATIONS
19	IMMU-39. FIRST-IN-KIND T CELLS CARRYING A CHIMERIC ANTIGEN RECEPTOR AGAINST AN EXTRACELLULAR MATRIX PROTEIN TARGET GLIOBLASTOMA CELLS AND SHOW ANTI-TUMOR EFFICACY. Neuro-Oncology, 2018, 20, vi129-vi130.	1.2	0
20	EXTH-44. TARGETING GLIOMA STEM CELLS WITH CAR-T IMMUNOTHERAPY IN XENOGRAFT ANIMAL MODELS. Neuro-Oncology, 2018, 20, vi94-vi94.	1.2	0
21	Updates On Chimeric Antigen Receptor-Mediated Glioblastoma Immunotherapy. Rhode Island Medical Journal (2013), 2017, 100, 39-42.	0.2	0