
Bruno Costa-Silva

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5235265/publications.pdf Version: 2024-02-01

RRUNO COSTA-SUVA

#	Article	IF	CITATIONS
1	Multiple myeloma patients-derived exosomes as a potential new clinical tool. Annals of Medicine, 2024, 51, 46-46.	3.8	0
2	Surface-enhanced Raman scattering paper-based analytical devices. , 2022, , 117-167.		1
3	Extracellular Vesicles Derived-LAT1 mRNA as a Powerful Inducer of Colorectal Cancer Aggressive Phenotype. Biology, 2022, 11, 145.	2.8	2
4	Microfluidic platforms for extracellular vesicle isolation, analysis and therapy in cancer. Lab on A Chip, 2022, 22, 1093-1125.	6.0	29
5	Messages from the Small Intestine Carried by Extracellular Vesicles in Prediabetes: A Proteomic Portrait. Journal of Proteome Research, 2022, 21, 910-920.	3.7	4
6	Defining Optimal Conditions for Tumor Extracellular Vesicle DNA Extraction for Mutation Profiling. Cancers, 2022, 14, 3258.	3.7	3
7	DNA in extracellular vesicles: biological and clinical aspects. Molecular Oncology, 2021, 15, 1701-1714.	4.6	102
8	MicroRNAs and Extracellular Vesicles as Distinctive Biomarkers of Precocious and Advanced Stages of Breast Cancer Brain Metastases Development. International Journal of Molecular Sciences, 2021, 22, 5214.	4.1	13
9	Current Applications and Discoveries Related to the Membrane Components of Circulating Tumor Cells and Extracellular Vesicles. Cells, 2021, 10, 2221.	4.1	5
10	Unraveling the Relevance of ARL GTPases in Cutaneous Melanoma Prognosis through Integrated Bioinformatics Analysis. International Journal of Molecular Sciences, 2021, 22, 9260.	4.1	4
11	Proteomic Landscape of Extracellular Vesicles for Diffuse Large B-Cell Lymphoma Subtyping. International Journal of Molecular Sciences, 2021, 22, 11004.	4.1	9
12	Is the Proteome of Bronchoalveolar Lavage Extracellular Vesicles a Marker of Advanced Lung Cancer?. Cancers, 2020, 12, 3450.	3.7	14
13	Transcriptome Reprogramming of CD11b+ Bone Marrow Cells by Pancreatic Cancer Extracellular Vesicles. Frontiers in Cell and Developmental Biology, 2020, 8, 592518.	3.7	10
14	Extracellular Vesicle and Particle Biomarkers Define Multiple Human Cancers. Cell, 2020, 182, 1044-1061.e18.	28.9	691
15	Employing Flow Cytometry to Extracellular Vesicles Sample Microvolume Analysis and Quality Control. Frontiers in Cell and Developmental Biology, 2020, 8, 593750.	3.7	34
16	Extracellular Vesicles Enriched in hsa-miR-301a-3p and hsa-miR-1293 Dynamics in Clear Cell Renal Cell Carcinoma Patients: Potential Biomarkers of Metastatic Disease. Cancers, 2020, 12, 1450.	3.7	36
17	Plasma Extracellular Vesicle-Derived TIMP-1 mRNA as a Prognostic Biomarker in Clear Cell Renal Cell Carcinoma: A Pilot Study. International Journal of Molecular Sciences, 2020, 21, 4624.	4.1	10
18	Liquid biopsies for multiple myeloma in a time of precision medicine. Journal of Molecular Medicine, 2020, 98, 513-525.	3.9	18

BRUNO COSTA-SILVA

#	Article	IF	CITATIONS
19	Extra-cellular vesicles carry proteome of cancer hallmarks. Frontiers in Bioscience - Landmark, 2020, 25, 398-436.	3.0	14
20	Label-Free Nanosensing Platform for Breast Cancer Exosome Profiling. ACS Sensors, 2019, 4, 2073-2083.	7.8	57
21	Tumour exosomal CEMIP protein promotes cancer cell colonization in brain metastasis. Nature Cell Biology, 2019, 21, 1403-1412.	10.3	254
22	Susceptibility Perturbation MRI Maps Tumor Infiltration into Mesorectal Lymph Nodes. Cancer Research, 2019, 79, 2435-2444.	0.9	4
23	The Gastrointestinal Tumor Microenvironment: An Updated Biological and Clinical Perspective. Journal of Oncology, 2019, 2019, 1-22.	1.3	10
24	Extracellular matrix proteins and carcinoembryonic antigen-related cell adhesion molecules characterize pancreatic duct fluid exosomes in patients with pancreaticÂcancer. Hpb, 2018, 20, 597-604.	0.3	52
25	Exosomes as emerging players in cancer biology. Biochimie, 2018, 155, 2-10.	2.6	46
26	Exosome-Based Cell-Cell Communication in the Tumor Microenvironment. Frontiers in Cell and Developmental Biology, 2018, 6, 18.	3.7	495
27	Characterization of Circulating and Bone Marrow Derived Exosomes in Multiple Myeloma Patients. Blood, 2018, 132, 3172-3172.	1.4	2
28	Effects of Folic Acid and Homocysteine on the Morphogenesis of Mouse Cephalic Neural Crest Cells In Vitro. Cellular and Molecular Neurobiology, 2017, 37, 371-376.	3.3	12
29	Pre-metastatic niches: organ-specific homes for metastases. Nature Reviews Cancer, 2017, 17, 302-317.	28.4	1,272
30	Prion protein binding to HOP modulates the migration and invasion of colorectal cancer cells. Clinical and Experimental Metastasis, 2016, 33, 441-451.	3.3	19
31	Pancreatic cancer exosomes initiate pre-metastatic niche formation in the liver. Nature Cell Biology, 2015, 17, 816-826.	10.3	2,064
32	Tumour exosome integrins determine organotropic metastasis. Nature, 2015, 527, 329-335.	27.8	3,688
33	Disruption of prion protein–HOP engagement impairs glioblastoma growth and cognitive decline and improves overall survival. Oncogene, 2015, 34, 3305-3314.	5.9	47
34	Double-stranded DNA in exosomes: a novel biomarker in cancer detection. Cell Research, 2014, 24, 766-769.	12.0	1,282
35	The unconventional secretion of stress-inducible protein 1 by a heterogeneous population of extracellular vesicles. Cellular and Molecular Life Sciences, 2013, 70, 3211-3227.	5.4	52
36	Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET. Nature Medicine, 2012, 18, 883-891.	30.7	3,098

BRUNO COSTA-SILVA

#	Article	IF	CITATIONS
37	Enhanced Neural Progenitor/Stem Cells Self-Renewal via the Interaction of Stress-Inducible Protein 1 with the Prion Protein. Stem Cells, 2011, 29, 1126-1136.	3.2	65
38	Impaired astrocytic extracellular matrix distribution under congenital hypothyroidism affects neuronal development in vitro. Journal of Neuroscience Research, 2010, 88, 3350-3360.	2.9	11
39	Fibronectin promotes differentiation of neural crest progenitors endowed with smooth muscle cell potential. Experimental Cell Research, 2009, 315, 955-967.	2.6	31
40	Thyroid Hormone Mediates Syndecan Expression in Rat Neonatal Cerebellum. Cellular and Molecular Neurobiology, 2008, 28, 795-801.	3.3	12
41	Patient-Derived Extracellular Vesicles Proteins as New Biomarkers in Multiple Myeloma - A Real-World Study. Frontiers in Oncology, 0, 12, .	2.8	2
42	Multiple Myeloma-Derived Extracellular Vesicles Modulate the Bone Marrow Immune Microenvironment. Frontiers in Immunology, 0, 13, .	4.8	6