
Andrea K Steck

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5234929/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Association of High-Affinity Autoantibodies With Type 1 Diabetes High-Risk HLA Haplotypes. Journal of Clinical Endocrinology and Metabolism, 2022, 107, e1510-e1517.	3.6	3
2	Characterising the age-dependent effects of risk factors on type 1 diabetes progression. Diabetologia, 2022, 65, 684.	6.3	11
3	Physical activity and progression to type 1 diabetes in children and youth with islet autoimmunity: The diabetes autoimmunity study in the young. Pediatric Diabetes, 2022, 23, 462-468.	2.9	1
4	Screening for Type 1 Diabetes in the General Population: A Status Report and Perspective. Diabetes, 2022, 71, 610-623.	0.6	59
5	Continuous Glucose Monitoring Profiles in Healthy, Nondiabetic Young Children. Journal of the Endocrine Society, 2022, 6, bvac060.	0.2	11
6	CGM Metrics Predict Imminent Progression to Type 1 Diabetes: Autoimmunity Screening for Kids (ASK) Study. Diabetes Care, 2022, 45, 365-371.	8.6	25
7	Changes in the Coexpression of Innate Immunity Genes During Persistent Islet Autoimmunity Are Associated With Progression of Islet Autoimmunity: Diabetes Autoimmunity Study in the Young (DAISY). Diabetes, 2022, 71, 2048-2057.	0.6	3
8	An Age-Related Exponential Decline in the Risk of Multiple Islet Autoantibody Seroconversion During Childhood. Diabetes Care, 2021, 44, 2260-2268.	8.6	23
9	Advances in Type 1 Diabetes Prediction Using Islet Autoantibodies: Beyond a Simple Count. Endocrine Reviews, 2021, 42, 584-604.	20.1	31
10	Phospholipid Levels at Seroconversion Are Associated With Resolution of Persistent Islet Autoimmunity: The Diabetes Autoimmunity Study in the Young. Diabetes, 2021, 70, 1592-1601.	0.6	5
11	Fine-mapping, trans-ancestral and genomic analyses identify causal variants, cells, genes and drug targets for type 1 diabetes. Nature Genetics, 2021, 53, 962-971.	21.4	133
12	<i>TCF7L2</i> Genetic Variants Do Not Influence Insulin Sensitivity or Secretion Indices in Autoantibody-Positive Individuals at Risk for Type 1 Diabetes. Diabetes Care, 2021, 44, 2039-2044.	8.6	0
13	Development of a standardized MRI protocol for pancreas assessment in humans. PLoS ONE, 2021, 16, e0256029.	2.5	9
14	Time to Peak Glucose and Peak C-Peptide During the Progression to Type 1 Diabetes in the Diabetes Prevention Trial and TrialNet Cohorts. Diabetes Care, 2021, 44, 2329-2336.	8.6	5
15	Proinsulin:C-peptide ratio trajectories over time in relatives at increased risk of progression to type 1 diabetes. Journal of Translational Autoimmunity, 2021, 4, 100089.	4.0	3
16	Factors Associated With the Decline of C-Peptide in a Cohort of Young Children Diagnosed With Type 1 Diabetes. Journal of Clinical Endocrinology and Metabolism, 2021, 106, e1380-e1388.	3.6	7
17	Mass Screening for Celiac Disease: The Autoimmunity Screening for Kids Study. American Journal of Gastroenterology, 2021, 116, 180-187.	0.4	28
18	Predictive Modeling of Type 1 Diabetes Stages Using Disparate Data Sources. Diabetes, 2020, 69, 238-248.	0.6	26

#	Article	IF	CITATIONS
19	Golimumab and Beta-Cell Function in Youth with New-Onset Type 1 Diabetes. New England Journal of Medicine, 2020, 383, 2007-2017.	27.0	137
20	A combined risk score enhances prediction of type 1 diabetes among susceptible children. Nature Medicine, 2020, 26, 1247-1255.	30.7	83
21	One-Hour Oral Glucose Tolerance Tests for the Prediction and Diagnostic Surveillance of Type 1 Diabetes. Journal of Clinical Endocrinology and Metabolism, 2020, 105, e4094-e4101.	3.6	17
22	The clinical consequences of heterogeneity within and between different diabetes types. Diabetologia, 2020, 63, 2040-2048.	6.3	86
23	Novel genetic risk factors influence progression of islet autoimmunity to type 1 diabetes. Scientific Reports, 2020, 10, 19193.	3.3	5
24	Cost and Cost-effectiveness of Large-scale Screening for Type 1 Diabetes in Colorado. Diabetes Care, 2020, 43, 1496-1503.	8.6	53
25	Longitudinal Metabolome-Wide Signals Prior to the Appearance of a First Islet Autoantibody in Children Participating in the TEDDY Study. Diabetes, 2020, 69, 465-476.	0.6	30
26	Risk of Islet and Celiac Autoimmunity in Cotwins of Probands With Type 1 Diabetes. Journal of the Endocrine Society, 2020, 4, bvaa053.	0.2	0
27	Hierarchical Order of Distinct Autoantibody Spreading and Progression to Type 1 Diabetes in the TEDDY Study. Diabetes Care, 2020, 43, 2066-2073.	8.6	41
28	DNA methylation near the <scp> <i>INS</i> </scp> gene is associated with <scp> <i>INS</i> </scp> genetic variation (rs689) and type 1 diabetes in the Diabetes Autoimmunity Study in the Young. Pediatric Diabetes, 2020, 21, 597-605.	2.9	6
29	Lessons From Continuous Clucose Monitoring in Youth With Pre–Type 1 Diabetes, Obesity, and Cystic Fibrosis. Diabetes Care, 2020, 43, e35-e37.	8.6	2
30	Identical and Nonidentical Twins: Risk and Factors Involved in Development of Islet Autoimmunity and Type 1 Diabetes. Diabetes Care, 2019, 42, 192-199.	8.6	27
31	Genetic Contribution to the Divergence in Type 1 Diabetes Risk Between Children From the General Population and Children From Affected Families. Diabetes, 2019, 68, 847-857.	0.6	22
32	Type 1 Diabetes Risk in African-Ancestry Participants and Utility of an Ancestry-Specific Genetic Risk Score. Diabetes Care, 2019, 42, 406-415.	8.6	62
33	Continuous Glucose Monitoring Predicts Progression to Diabetes in Autoantibody Positive Children. Journal of Clinical Endocrinology and Metabolism, 2019, 104, 3337-3344.	3.6	29
34	The Influence of Type 2 Diabetes–Associated Factors on Type 1 Diabetes. Diabetes Care, 2019, 42, 1357-1364.	8.6	30
35	Low-Dose Anti-Thymocyte Globulin Preserves C-Peptide, Reduces HbA1c, and Increases Regulatory to Conventional T-Cell Ratios in New-Onset Type 1 Diabetes: Two-Year Clinical Trial Data. Diabetes, 2019, 68, 1267-1276.	0.6	80
36	Family adjustment to diabetes diagnosis in children: Can participation in a study on type 1 diabetes genetic risk be helpful?. Pediatric Diabetes, 2018, 19, 1025-1033.	2.9	27

#	Article	IF	CITATIONS
37	Predicting progression to diabetes in islet autoantibody positive children. Journal of Autoimmunity, 2018, 90, 59-63.	6.5	17
38	Characteristics of slow progression to diabetes in multiple islet autoantibody-positive individuals from five longitudinal cohorts: the SNAIL study. Diabetologia, 2018, 61, 1484-1490.	6.3	32
39	Prediction of type 1 diabetes using a genetic risk model in the Diabetes Autoimmunity Study in the Young. Pediatric Diabetes, 2018, 19, 277-283.	2.9	19
40	Plasma 25-Hydroxyvitamin D Concentration and Risk of Islet Autoimmunity. Diabetes, 2018, 67, 146-154.	0.6	72
41	<i>TCF7L2</i> Genetic Variants Contribute to Phenotypic Heterogeneity of Type 1 Diabetes. Diabetes Care, 2018, 41, 311-317.	8.6	51
42	Genetics of type 1 diabetes. Pediatric Diabetes, 2018, 19, 346-353.	2.9	137
43	Transcription Factor 7-Like 2 (<i>TCF7L2</i>) Gene Polymorphism and Progression From Single to Multiple Autoantibody Positivity in Individuals at Risk for Type 1 Diabetes. Diabetes Care, 2018, 41, 2480-2486.	8.6	23
44	Genetic scores to stratify risk of developing multiple islet autoantibodies and type 1 diabetes: A prospective study in children. PLoS Medicine, 2018, 15, e1002548.	8.4	101
45	Identification and Analysis of Islet Antigen–Specific CD8+ T Cells with T Cell Libraries. Journal of Immunology, 2018, 201, 1662-1670.	0.8	19
46	A Type 1 Diabetes Genetic Risk Score Predicts Progression of Islet Autoimmunity and Development of Type 1 Diabetes in Individuals at Risk. Diabetes Care, 2018, 41, 1887-1894.	8.6	104
47	\hat{I}^2 Cell dysfunction exists more than 5 years before type 1 diabetes diagnosis. JCI Insight, 2018, 3, .	5.0	62
48	Residual beta-cell function in diabetes children followed and diagnosed in the TEDDY study compared to community controls. Pediatric Diabetes, 2017, 18, 794-802.	2.9	39
49	The Use of Electrochemiluminescence Assays to Predict Autoantibody and Glycemic Progression Toward Type 1 Diabetes in Individuals with Single Autoantibodies. Diabetes Technology and Therapeutics, 2017, 19, 183-187.	4.4	21
50	Can Non-HLA Single Nucleotide Polymorphisms Help Stratify Risk in TrialNet Relatives at Risk for Type 1 Diabetes?. Journal of Clinical Endocrinology and Metabolism, 2017, 102, 2873-2880.	3.6	20
51	Late-onset islet autoimmunity in childhood: the Diabetes Autoimmunity Study in the Young (DAISY). Diabetologia, 2017, 60, 998-1006.	6.3	18
52	Genetic Risk Scores for Type 1 Diabetes Prediction and Diagnosis. Current Diabetes Reports, 2017, 17, 129.	4.2	32
53	Impact of Age and Antibody Type on Progression From Single to Multiple Autoantibodies in Type 1 Diabetes Relatives. Journal of Clinical Endocrinology and Metabolism, 2017, 102, 2881-2886.	3.6	35
54	Increased inflammation is associated with islet autoimmunity and type 1 diabetes in the Diabetes Autoimmunity Study in the Young (DAISY). PLoS ONE, 2017, 12, e0174840.	2.5	32

#	Article	IF	CITATIONS
55	Increased DNA methylation variability in type 1 diabetes across three immune effector cell types. Nature Communications, 2016, 7, 13555.	12.8	142
56	ECL-IAA and ECL-GADA Can Identify High-Risk Single Autoantibody-Positive Relatives in the TrialNet Pathway to Prevention Study. Diabetes Technology and Therapeutics, 2016, 18, 410-414.	4.4	25
57	Do Electrochemiluminescence Assays Improve Prediction of Time to Type 1 Diabetes in Autoantibody-Positive TrialNet Subjects?. Diabetes Care, 2016, 39, 1738-1744.	8.6	19
58	Reduction of Insulin Related Preventable Severe Hypoglycemic Events in Hospitalized Children. Pediatrics, 2016, 138, .	2.1	7
59	Predictors of slow progression to diabetes in children with multiple islet autoantibodies. Journal of Autoimmunity, 2016, 72, 113-117.	6.5	30
60	HLA-DRB1*15:01-DQA1*01:02-DQB1*06:02 Haplotype Protects Autoantibody-Positive Relatives From Type 1 Diabetes Throughout the Stages of Disease Progression. Diabetes, 2016, 65, 1109-1119.	0.6	48
61	A multiplex assay combining insulin, GAD, IA-2 and transglutaminase autoantibodies to facilitate screening for pre-type 1 diabetes and celiac disease. Journal of Immunological Methods, 2016, 430, 28-32.	1.4	45
62	Use of Dried Capillary Blood Sampling for Islet Autoantibody Screening in Relatives: A Feasibility Study. Diabetes Technology and Therapeutics, 2015, 17, 867-871.	4.4	17
63	Predictors of Progression From the Appearance of Islet Autoantibodies to Early Childhood Diabetes: The Environmental Determinants of Diabetes in the Young (TEDDY). Diabetes Care, 2015, 38, 808-813.	8.6	135
64	Electrochemiluminescence Assays for Insulin and Glutamic Acid Decarboxylase Autoantibodies Improve Prediction of Type 1 Diabetes Risk. Diabetes Technology and Therapeutics, 2015, 17, 119-127.	4.4	55
65	Response to Comment on Steck et al. Early Hyperglycemia Detected by Continuous Glucose Monitoring in Children at Risk for Type 1 Diabetes. Diabetes Care 2014;37:2031–2033. Diabetes Care, 2015, 38, e48-e48.	8.6	2
66	Contrasting the Genetic Background of Type 1 Diabetes and Celiac Disease Autoimmunity. Diabetes Care, 2015, 38, S37-S44.	8.6	39
67	Role of Type 1 Diabetes–Associated SNPs on Risk of Autoantibody Positivity in the TEDDY Study. Diabetes, 2015, 64, 1818-1829.	0.6	108
68	Improving prediction of type 1 diabetes by testing non-HLA genetic variants in addition to HLA markers. Pediatric Diabetes, 2014, 15, 355-362.	2.9	48
69	Improving coeliac disease risk prediction by testing non-HLA variants additional to HLA variants. Gut, 2014, 63, 415-422.	12.1	113
70	Early Hyperglycemia Detected by Continuous Glucose Monitoring in Children at Risk for Type 1 Diabetes. Diabetes Care, 2014, 37, 2031-2033.	8.6	29
71	Proinsulin/Insulin Autoantibodies Measured With Electrochemiluminescent Assay Are the Earliest Indicator of Prediabetic Islet Autoimmunity. Diabetes Care, 2013, 36, 2266-2270.	8.6	66
72	Seroconversion to Multiple Islet Autoantibodies and Risk of Progression to Diabetes in Children. JAMA - Journal of the American Medical Association, 2013, 309, 2473.	7.4	914

5

#	Article	IF	CITATIONS
73	GAD65 Autoantibodies Detected by Electrochemiluminescence Assay Identify High Risk for Type 1 Diabetes. Diabetes, 2013, 62, 4174-4178.	0.6	82
74	Effects of Non-HLA Gene Polymorphisms on Development of Islet Autoimmunity and Type 1 Diabetes in a Population With High-Risk HLA-DR,DQ Genotypes. Diabetes, 2012, 61, 753-758.	0.6	48
75	Age of Islet Autoantibody Appearance and Mean Levels of Insulin, but Not GAD or IA-2 Autoantibodies, Predict Age of Diagnosis of Type 1 Diabetes. Diabetes Care, 2011, 34, 1397-1399.	8.6	163
76	Single Nucleotide Transcription Factor 7-Like 2 (TCF7L2) Gene Polymorphisms in Antiislet Autoantibody-Negative Patients at Onset of Diabetes. Journal of Clinical Endocrinology and Metabolism, 2009, 94, 504-510.	3.6	10
77	Genetic Similarities Between Latent Autoimmune Diabetes and Type 1 and Type 2 Diabetes. Diabetes, 2008, 57, 1160-1162.	0.6	15
78	Recent advances in insulin treatment of children. Pediatric Diabetes, 2007, 8, 49-56.	2.9	12
79	Association of the PTPN22/LYP gene with type 1 diabetes. Pediatric Diabetes, 2006, 7, 274-278.	2.9	53
80	Association of Non-HLA Genes With Type 1 Diabetes Autoimmunity. Diabetes, 2005, 54, 2482-2486.	0.6	55