Pablo D Dans

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5232741/publications.pdf Version: 2024-02-01

PARIO D DANS

#	Article	IF	CITATIONS
1	Molecular basis of Arginine and Lysine DNA sequence-dependent thermo-stability modulation. PLoS Computational Biology, 2022, 18, e1009749.	3.2	1
2	Antimicrobial peptides in the seedling transcriptome of the tree legume Peltophorum dubium. Biochimie, 2021, 180, 229-242.	2.6	2
3	Impact of DNA methylation on 3D genome structure. Nature Communications, 2021, 12, 3243.	12.8	61
4	The Impact of the HydroxyMethylCytosine epigenetic signature on DNA structure and function. PLoS Computational Biology, 2021, 17, e1009547.	3.2	6
5	Sequence-dependent structural properties of B-DNA: what have we learned in 40Âyears?. Biophysical Reviews, 2021, 13, 995-1005.	3.2	13
6	Molecular Determinants for Nitric Oxide Regulation of the Murine Cationic Amino Acid Transporter CAT-2A. Biochemistry, 2020, 59, 4225-4237.	2.5	1
7	A multi-modal coarse grained model of DNA flexibility mappable to the atomistic level. Nucleic Acids Research, 2020, 48, e29-e29.	14.5	27
8	Epigenetic loss of RNA-methyltransferase NSUN5 in glioma targets ribosomes to drive a stress adaptive translational program. Acta Neuropathologica, 2019, 138, 1053-1074.	7.7	106
9	Gene isolation and structural characterization of a legume tree defensin with a broad spectrum of antimicrobial activity. Planta, 2019, 250, 1757-1772.	3.2	5
10	How B-DNA Dynamics Decipher Sequence-Selective Protein Recognition. Journal of Molecular Biology, 2019, 431, 3845-3859.	4.2	34
11	VeriNA3d: an R package for nucleic acids data mining. Bioinformatics, 2019, 35, 5334-5336.	4.1	4
12	The static and dynamic structural heterogeneities of B-DNA: extending Calladine–Dickerson rules. Nucleic Acids Research, 2019, 47, 11090-11102.	14.5	45
13	Modulation of the helical properties of DNA: next-to-nearest neighbour effects and beyond. Nucleic Acids Research, 2019, 47, 4418-4430.	14.5	32
14	An In-Depth Look at DNA Crystals through the Prism of Molecular Dynamics Simulations. CheM, 2019, 5, 649-663.	11.7	11
15	Modeling, Simulations, and Bioinformatics at the Service of RNA Structure. CheM, 2019, 5, 51-73.	11.7	25
16	Allosterism and signal transfer in DNA. Nucleic Acids Research, 2018, 46, 7554-7565.	14.5	30
17	Glyceraldehyde-3-phosphate dehydrogenase is a chaperone that allocates labile heme in cells. Journal of Biological Chemistry, 2018, 293, 14557-14568.	3.4	93
18	Antimicrobial and structural insights of a new snakin-like peptide isolated from Peltophorum dubium (Fabaceae). Amino Acids, 2018, 50, 1245-1259.	2.7	25

PABLO D DANS

#	Article	IF	CITATIONS
19	How accurate are accurate force-fields for B-DNA?. Nucleic Acids Research, 2017, 45, gkw1355.	14.5	107
20	The Role of Unconventional Hydrogen Bonds in Determining Bll Propensities in B-DNA. Journal of Physical Chemistry Letters, 2017, 8, 21-28.	4.6	18
21	Saturation of recognition elements blocks evolution of new tRNA identities. Science Advances, 2016, 2, e1501860.	10.3	46
22	Long-timescale dynamics of the Drew–Dickerson dodecamer. Nucleic Acids Research, 2016, 44, 4052-4066.	14.5	86
23	Small Details Matter: The 2′-Hydroxyl as a Conformational Switch in RNA. Journal of the American Chemical Society, 2016, 138, 16355-16363.	13.7	23
24	Parmbsc1: a refined force field for DNA simulations. Nature Methods, 2016, 13, 55-58.	19.0	790
25	Multiscale simulation of DNA. Current Opinion in Structural Biology, 2016, 37, 29-45.	5.7	124
26	BIGNASim: a NoSQL database structure and analysis portal for nucleic acids simulation data. Nucleic Acids Research, 2016, 44, D272-D278.	14.5	57
27	The structural impact of DNA mismatches. Nucleic Acids Research, 2015, 43, 4309-4321.	14.5	113
28	Connecting Proline and γ-Aminobutyric Acid in Stressed Plants through Non-Enzymatic Reactions. PLoS ONE, 2015, 10, e0115349.	2.5	112
29	μABC: a systematic microsecond molecular dynamics study of tetranucleotide sequence effects in B-DNA. Nucleic Acids Research, 2014, 42, 12272-12283.	14.5	186
30	Unraveling the sequence-dependent polymorphic behavior of d(CpG) steps in B-DNA. Nucleic Acids Research, 2014, 42, 11304-11320.	14.5	81
31	Direct measurement of the dielectric polarization properties of DNA. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E3624-30.	7.1	160
32	Assessing the Accuracy of the SIRAH Force Field to Model DNA at Coarse Grain Level. Lecture Notes in Computer Science, 2013, , 71-81.	1.3	18
33	Breathing, bubbling, and bending: DNA flexibility from multimicrosecond simulations. Physical Review E, 2012, 86, 021903.	2.1	35
34	Exploring polymorphisms in B-DNA helical conformations. Nucleic Acids Research, 2012, 40, 10668-10678.	14.5	89
35	A hybrid all-atom/coarse grain model for multiscale simulations of DNA. Physical Chemistry Chemical Physics, 2011, 13, 18134.	2.8	43
36	Switching Reversibility to Irreversibility in Glycogen Synthase Kinase 3 Inhibitors: Clues for Specific Design of New Compounds. Journal of Medicinal Chemistry, 2011, 54, 4042-4056.	6.4	84

PABLO D DANS

#	Article	IF	CITATIONS
37	Isoform-specific determinants in the HP1 binding to histone 3: insights from molecular simulations. Amino Acids, 2010, 38, 1571-1581.	2.7	9
38	Subcellular localization of the interaction between the human immunodeficiency virus transactivator Tat and the nucleosome assembly protein 1. Amino Acids, 2010, 38, 1583-1593.	2.7	20
39	Another Coarse Grain Model for Aqueous Solvation: WAT FOUR?. Journal of Chemical Theory and Computation, 2010, 6, 3793-3807.	5.3	111
40	A Coarse Grained Model for Atomic-Detailed DNA Simulations with Explicit Electrostatics. Journal of Chemical Theory and Computation, 2010, 6, 1711-1725.	5.3	127
41	Density Functional Theory Characterization and Descriptive Analysis of Cisplatin and Related Compounds. Journal of Chemical Information and Modeling, 2009, 49, 1407-1419.	5.4	14
42	Structural and Energetic Study of Cisplatin and Derivatives: Comparison of the Performance of Density Funtional Theory Implementations. Journal of Chemical Theory and Computation, 2008, 4, 740-750.	5.3	18
43	Chapter 7. Molecular Modelling of Nucleic Acids. Chemical Biology, 0, , 165-197.	0.2	0