
Eyal D Schejter

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/523261/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Microtubules provide guidance cues for myofibril and sarcomere assembly and growth. Developmental Dynamics, 2021, 250, 60-73.	1.8	7
2	Exocytosis by vesicle crumpling maintains apical membrane homeostasis during exocrine secretion. Developmental Cell, 2021, 56, 1603-1616.e6.	7.0	20
3	ERK1/2 inhibition promotes robust myotube growth via CaMKII activation resulting in myoblast-to-myotube fusion. Developmental Cell, 2021, 56, 3349-3363.e6.	7.0	45
4	Generation and timing of graded responses to morphogen gradients. Development (Cambridge), 2021, 148, .	2.5	5
5	Global shape of Toll activation is determined by wntD enhancer properties. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 1552-1558.	7.1	3
6	Dynamics of Spaetzle morphogen shuttling in the <i>Drosophila</i> embryo shapes gastrulation patterning. Development (Cambridge), 2019, 146, .	2.5	16
7	Feedback inhibition of actin on Rho mediates content release from large secretory vesicles. Journal of Cell Biology, 2018, 217, 1815-1826.	5.2	38
8	Death by over-eating: The Gaucher disease associated gene <i>GBA1</i> , identified in a screen for mediators of autophagic cell death, is necessary for developmental cell death in <i>Drosophila</i> midgut. Cell Cycle, 2017, 16, 2003-2010.	2.6	21
9	The Drosophila formin Fhos is a primary mediator of sarcomeric thin-filament array assembly. ELife, 2016, 5, .	6.0	36
10	Periodic patterning of the Drosophila eye is stabilized by the diffusible activator Scabrous. Nature Communications, 2016, 7, 10461.	12.8	28
11	Myoblast fusion: Experimental systems and cellular mechanisms. Seminars in Cell and Developmental Biology, 2016, 60, 112-120.	5.0	31
12	Adhesion and Fusion of Muscle Cells Are Promoted by Filopodia. Developmental Cell, 2016, 38, 291-304.	7.0	37
13	Orchestrated content release from Drosophila glue-protein vesicles by a contractile actomyosinÂnetwork. Nature Cell Biology, 2016, 18, 181-190.	10.3	72
14	A WntD-Dependent Integral Feedback Loop Attenuates Variability in Drosophila Toll Signaling. Developmental Cell, 2016, 36, 401-414.	7.0	36
15	The Edges of Pancreatic Islet Î ² Cells Constitute Adhesive and Signaling Microdomains. Cell Reports, 2015, 10, 317-325.	6.4	62
16	Surface apposition and multiple cell contacts promote myoblast fusion in <i>Drosophila</i> flight muscles. Journal of Cell Biology, 2015, 211, 191-203.	5.2	39
17	N-WASP Is Required for Structural Integrity of the Blood-Testis Barrier. PLoS Genetics, 2014, 10, e1004447.	3.5	30
18	Assessing the Secretory Capacity of Pancreatic Acinar Cells. Journal of Visualized Experiments, 2014, , .	0.3	5

EYAL D SCHEJTER

#	Article	IF	CITATIONS
19	Creating gradients by morphogen shuttling. Trends in Genetics, 2013, 29, 339-347.	6.7	41
20	Targeting secretion to the apical surface by mDia1-built actin tracks. Communicative and Integrative Biology, 2013, 6, e25660.	1.4	2
21	The actin regulator N-WASp is required for muscle-cell fusion in mice. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 11211-11216.	7.1	88
22	Bidirectional Notch activation represses fusion competence in swarming adult <i>Drosophila</i> myoblasts. Development (Cambridge), 2012, 139, 4040-4050.	2.5	42
23	Self-Organized Shuttling: Generating Sharp Dorsoventral Polarity in the Early Drosophila Embryo. Cell, 2012, 150, 1016-1028.	28.9	44
24	The actin nucleator WASp is required for myoblast fusion during adult <i>Drosophila</i> myogenesis. Development (Cambridge), 2011, 138, 2347-2357.	2.5	39
25	Born to run: creating the muscle fiber. Current Opinion in Cell Biology, 2010, 22, 566-574.	5.4	41
26	Making muscles- Arp, two, three. Fly, 2010, 4, 145-148.	1.7	4
27	The SCAR and WASp nucleationâ€promoting factors act sequentially to mediate Drosophila myoblast fusion. EMBO Reports, 2009, 10, 1043-1050.	4.5	66
28	Delta traffic takes a sh-Arp turn. Nature Cell Biology, 2009, 11, 791-793.	10.3	1
29	Actin Organization in the Early Drosophila Embryo. Novartis Foundation Symposium, 2008, , 127-143.	1.1	1
30	WIP/WASp-Based Actin-Polymerization Machinery Is Essential for Myoblast Fusion in Drosophila. Developmental Cell, 2007, 12, 557-569.	7.0	140
31	Microtubule-dependent organization of subcortical microfilaments in the earlyDrosophila embryo. Developmental Dynamics, 2007, 236, 662-670.	1.8	6
32	Actin organization in the early Drosophila embryo. Novartis Foundation Symposium, 2005, 269, 127-38; discussion 138-43, 223-30.	1.1	1
33	WAVE/SCAR, a multifunctional complex coordinating different aspects of neuronal connectivity. Developmental Biology, 2004, 274, 260-270.	2.0	70
34	Modular Tubes Common Principles of Renal Development. Current Biology, 2003, 13, R511-R513.	3.9	5
35	SCAR is a primary regulator of Arp2/3-dependent morphological events in Drosophila. Journal of Cell Biology, 2002, 156, 689-701.	5.2	244
36	Mutations in centrosomin reveal requirements for centrosomal function during early Drosophila embryogenesis. Current Biology, 1999, 9, 889-898.	3.9	119