
Patricia V Elizalde

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5231097/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Halting ErbB-2 isoforms retrograde transport to the nucleus as a new theragnostic approach for triple-negative breast cancer. Cell Death and Disease, 2022, 13, 447.	6.3	4
2	Regulation of telomere homeostasis and genomic stability in cancer by <i>N</i> ⁶ -adenosine methylation (m ⁶ A). Science Advances, 2021, 7, .	10.3	18
3	Steroid hormone receptors: A South American perspective. Steroids, 2020, 155, 108554.	1.8	0
4	Canonical ErbB-2 isoform and ErbB-2 variant c located in the nucleus drive triple negative breast cancer growth. Oncogene, 2020, 39, 6245-6262.	5.9	5
5	Tumor Necrosis Factor α Blockade: An Opportunity to Tackle Breast Cancer. Frontiers in Oncology, 2020, 10, 584.	2.8	96
6	Nuclear PDCD4 Expression Defines a Subset of Luminal B-Like Breast Cancers with Good Prognosis. Hormones and Cancer, 2020, 11, 218-239.	4.9	7
7	Blockade of Stat3 oncogene addiction induces cellular senescence and reveals a cell-nonautonomous activity suitable for cancer immunotherapy. Oncolmmunology, 2020, 9, 1715767.	4.6	14
8	Nuclear ErbB-2: a Novel Therapeutic Target in ErbB-2-Positive Breast Cancer?. Hormones and Cancer, 2019, 10, 64-70.	4.9	9
9	Revisiting progesterone receptor (PR) actions in breast cancer: Insights into PR repressive functions. Steroids, 2018, 133, 75-81.	1.8	12
10	Tamoxifen Resistance in Breast Cancer Is Regulated by the EZH2–ERα–GREB1 Transcriptional Axis. Cancer Research, 2018, 78, 671-684.	0.9	80
11	Inhibition of MHCâ€I by Brucella abortus is an early event during infection and involves EGFR pathway. Immunology and Cell Biology, 2017, 95, 388-398.	2.3	23
12	TNFα-Induced Mucin 4 Expression Elicits Trastuzumab Resistance in HER2-Positive Breast Cancer. Clinical Cancer Research, 2017, 23, 636-648.	7.0	74
13	Invasive micropapillary carcinoma of the breast overexpresses MUC4 and is associated with poor outcome to adjuvant trastuzumab in HER2-positive breast cancer. BMC Cancer, 2017, 17, 895.	2.6	20
14	ErbB-2 nuclear function in breast cancer growth, metastasis and resistance to therapy. Endocrine-Related Cancer, 2016, 23, T243-T257.	3.1	42
15	Progesterone-induced stimulation of mammary tumorigenesis is due to the progesterone metabolite, 51±-dihydroprogesterone (51±P) and can be suppressed by the 51±-reductase inhibitor, finasteride. Journal of Steroid Biochemistry and Molecular Biology, 2015, 149, 27-34.	2.5	20
16	Heregulin Co-opts PR Transcriptional Action Via Stat3 Role As a Coregulator to Drive Cancer Growth. Molecular Endocrinology, 2015, 29, 1468-1485.	3.7	12
17	Progesterone receptor activation downregulates GATA3 by transcriptional repression and increased protein turnover promoting breast tumor growth. Breast Cancer Research, 2014, 16, 491.	5.0	27
18	p42/p44 MAPK-mediated Stat3Ser727 phosphorylation is required for progestin-induced full activation of Stat3 and breast cancer growth. Endocrine-Related Cancer, 2013, 20, 197-212.	3.1	65

PATRICIA V ELIZALDE

#	Article	IF	CITATIONS
19	Progestin drives breast cancer growth by inducing p21CIP1 expression through the assembly of a transcriptional complex among Stat3, progesterone receptor and ErbB-2. Steroids, 2013, 78, 559-567.	1.8	22
20	Targeting Stat3 Induces Senescence in Tumor Cells and Elicits Prophylactic and Therapeutic Immune Responses against Breast Cancer Growth Mediated by NK Cells and CD4+ T Cells. Journal of Immunology, 2012, 189, 1162-1172.	0.8	46
21	The molecular basis of progesterone receptor action in breast carcinogenesis. Hormone Molecular Biology and Clinical Investigation, 2012, 9, 105-17.	0.7	4
22	Downregulation of the tumor-suppressor miR-16 via progestin-mediated oncogenic signaling contributes to breast cancer development. Breast Cancer Research, 2012, 14, R77.	5.0	93
23	Clinical relevance of ErbB-2/HER2 nuclear expression in breast cancer. BMC Cancer, 2012, 12, 74.	2.6	38
24	Small Interfering RNA Targeted to IGF-IR Delays Tumor Growth and Induces Proinflammatory Cytokines in a Mouse Breast Cancer Model. PLoS ONE, 2012, 7, e29213.	2.5	35
25	Influence of conformationally restricted pyrimidines on the activity of 10–23 DNAzymes. Bioorganic and Medicinal Chemistry, 2012, 20, 2581-2586.	3.0	20
26	Novel role of signal transducer and activator of transcription 3 as a progesterone receptor coactivator in breast cancer. Steroids, 2011, 76, 381-392.	1.8	23
27	Transactivation of ErbB-2 induced by tumor necrosis factor α promotes NF-κB activation and breast cancer cell proliferation. Breast Cancer Research and Treatment, 2010, 122, 111-124.	2.5	35
28	Progesterone Receptor Induces ErbB-2 Nuclear Translocation To Promote Breast Cancer Growth via a Novel Transcriptional Effect: ErbB-2 Function as a Coactivator of Stat3. Molecular and Cellular Biology, 2010, 30, 5456-5472.	2.3	98
29	Activation of Stat3 by Heregulin/ErbB-2 through the Co-Option of Progesterone Receptor Signaling Drives Breast Cancer Growth. Molecular and Cellular Biology, 2009, 29, 1249-1265.	2.3	57
30	TNFα acting on TNFR1 promotes breast cancer growth via p42/P44 MAPK, JNK, Akt and NF-κB-dependent pathways. Experimental Cell Research, 2008, 314, 509-529.	2.6	135
31	Progestin Effects on Breast Cancer Cell Proliferation, Proteases Activation, andin VivoDevelopment of Metastatic Phenotype All Depend on Progesterone Receptor Capacity to Activate Cytoplasmic Signaling Pathways. Molecular Endocrinology, 2007, 21, 1335-1358.	3.7	87
32	Immunization with Murine Breast Cancer Cells Treated with Antisense Oligodeoxynucleotides to Type I Insulin-Like Growth Factor Receptor Induced an Antitumoral Effect Mediated by a CD8+ Response Involving Fas/Fas Ligand Cytotoxic Pathway. Journal of Immunology, 2006, 176, 3426-3437.	0.8	25
33	Progestins Induce Transcriptional Activation of Signal Transducer and Activator of Transcription 3 (Stat3) via a Jak- and Src-Dependent Mechanism in Breast Cancer Cells. Molecular and Cellular Biology, 2005, 25, 4826-4840.	2.3	113
34	Inhibition of in vivo breast cancer growth by antisense oligodeoxynucleotides to type I insulin-like growth factor receptor mRNA involves inactivation of ErbBs, PI-3K/Akt and p42/p44 MAPK signaling pathways but not modulation of progesterone receptor activity. Oncogene, 2004, 23, 5161-5174.	5.9	66
35	Involvement of TGF-βs/TβRs System in Tumor Progression of Murine Mammary Adenocarcinomas. Breast Cancer Research and Treatment, 2003, 80, 287-301.	2.5	7
36	Heregulin Induces Transcriptional Activation of the Progesterone Receptor by a Mechanism That Requires Functional ErbB-2 and Mitogen-Activated Protein Kinase Activation in Breast Cancer Cells. Molecular and Cellular Biology, 2003, 23, 1095-1111.	2.3	83

PATRICIA V ELIZALDE

#	Article	IF	CITATIONS
37	Heregulin inhibits proliferation via ERKs and phosphatidyl-inositol 3-kinase activation but regulates urokinase plasminogen activator independently of these pathways in metastatic mammary tumor cells. International Journal of Cancer, 2002, 100, 642-653.	5.1	34
38	Mechanisms of Cell Cycle Arrest in Response to TGF-β in Progestin-Dependent and -Independent Growth of Mammary Tumors. Experimental Cell Research, 2001, 265, 152-166.	2.6	9
39	Activation of ErbB-2 via a hierarchical interaction between ErbB-2 and type I insulin-like growth factor receptor in mammary tumor cells. Oncogene, 2001, 20, 34-47.	5.9	111
40	Interactions between progestins and heregulin (HRG) signaling pathways: HRG acts as mediator of progestins proliferative effects in mouse mammary adenocarcinomas. Oncogene, 1999, 18, 6370-6379.	5.9	50
41	Involvement of insulin-like growth factors-I and -II and their receptors in medroxyprogesterone acetate-induced growth of mouse mammary adenocarcinomas. Journal of Steroid Biochemistry and Molecular Biology, 1998, 67, 305-317.	2.5	18
42	Varying patterns of expression of insulin-like growth factors I and II and their receptors in murine mammary adenocarcinomas of different metastasizing ability. , 1996, 65, 812-820.		37
43			