List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5230957/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Field assisted sintering of dense Al-substituted cubic phase Li7La3Zr2O12 solid electrolytes. Journal of Power Sources, 2014, 268, 960-964.	7.8	151
2	Effect of lithium ion concentration on the microstructure evolution and its association with the ionic conductivity of cubic garnet-type nominal Li7Al0.25La3Zr2O12 solid electrolytes. Solid State lonics, 2016, 284, 53-60.	2.7	60
3	Phase Equilibria, Microstructure, and High-Temperature Strength of TiC-Added Mo-Si-B Alloys. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2014, 45, 1112-1123.	2.2	53
4	Preparation of ZrB2-SiC composites by arc melting and their properties. Journal of the Ceramic Society of Japan, 2008, 116, 431-435.	1.1	45
5	Fabrication of transparent SiO2 glass by pressureless sintering and spark plasma sintering. Ceramics International, 2012, 38, 2673-2678.	4.8	45
6	3D derived N-doped carbon matrix from 2D ZIF-L as an enhanced stable catalyst for chemical fixation. Microporous and Mesoporous Materials, 2019, 285, 80-88.	4.4	45
7	Seedâ€Free Solidâ€State Growth of Large Leadâ€Free Piezoelectric Single Crystals: (Na _{1/2} K _{1/2})NbO ₃ . Journal of the American Ceramic Society, 2015, 98, 2988-2996.	3.8	43
8	Spark plasma sintering of Al2O3–cBN composites facilitated by Ni nanoparticle precipitation on cBN powder by rotary chemical vapor deposition. Journal of the European Ceramic Society, 2011, 31, 2083-2087.	5.7	41
9	Highâ€Speed Preparation of <111>―and <110>â€Oriented βâ€SiC Films by Laser Chemical Vapor Deposition. Journal of the American Ceramic Society, 2014, 97, 952-958.	3.8	41
10	Rapid Synthesis of Yttria-Partially-Stabilized Zirconia Films by Metal-Organic Chemical Vapor Deposition. Materials Transactions, 2002, 43, 2354-2356.	1.2	39
11	Highâ€5peed Epitaxial Growth of βâ€ <scp><scp>SiC</scp> Film on <scp><scp>Si</scp> (111) Single Crystal by Laser Chemical Vapor Deposition. Journal of the American Ceramic Society, 2012, 95, 2782-2784.</scp></scp>	3.8	38
12	Preparation of directionally solidified TiB2–TiC eutectic composites by a floating zone method. Materials Letters, 2006, 60, 839-843.	2.6	37
13	Preparation of SiOC nanocomposite films by laser chemical vapor deposition. Journal of the European Ceramic Society, 2016, 36, 403-409.	5.7	37
14	Compositional regions of single phases at 1800°C in Mo-rich Mo–Si–B ternary system. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2012, 552, 179-188.	5.6	36
15	Preparation of carbon nanotube by rotary CVD on Ni nano-particle precipitated cBN using nickelocene as a precursor. Materials Letters, 2011, 65, 367-370.	2.6	35
16	Growth Mechanism and Defects of <111>â€Oriented βâ€ 5 iC Films Deposited by Laser Chemical Vapor Deposition. Journal of the American Ceramic Society, 2015, 98, 236-241.	3.8	35
17	Chemical Vapor Deposition Mediated Phase Engineering for 2D Transition Metal Dichalcogenides: Strategies and Applications. Small Science, 2022, 2, 2100047.	9.9	35
18	Suppression of carbon contamination in SPSed CaF2 transparent ceramics by Mo foil. Journal of the European Ceramic Society, 2017, 37, 4103-4107.	5.7	34

#	Article	IF	CITATIONS
19	Crystal structure of the high-temperature paraelectric phase in barium titanate BaTi2O5. Applied Physics Letters, 2005, 87, 101909.	3.3	33
20	Low-temperature deposition of α-Al2O3 films by laser chemical vapor deposition using a diode laser. Applied Surface Science, 2010, 256, 3906-3911.	6.1	33
21	Preparation of Ni-precipitated hBN powder by rotary chemical vapor deposition and its consolidation by spark plasma sintering. Journal of Alloys and Compounds, 2010, 502, 371-375.	5.5	33
22	Densification, microstructure and mechanical properties of SiO2–cBN composites by spark plasma sintering. Ceramics International, 2012, 38, 351-356.	4.8	30
23	Effect of microstructure on HER catalytic properties of MoS2 vertically standing nanosheets. Journal of Alloys and Compounds, 2018, 747, 100-108.	5.5	30
24	Laser in-situ synthesizing Ti5Si3/Al3Ni2 reinforced Al3Ti/NiTi composite coatings: Microstructure, mechanical characteristics and oxidation behavior. Optics and Laser Technology, 2019, 109, 99-109.	4.6	30
25	High-temperature ultra-strength of dual-phase Re0.5MoNbW(TaC)0.5 high-entropy alloy matrix composite. Journal of Materials Science and Technology, 2021, 84, 1-9.	10.7	30
26	Preparation of Directionally Solidified B ₄ C–TiB ₂ –SiC Ternary Eutectic Composites by a Floating Zone Method and Their Properties. Materials Transactions, 2005, 46, 2067-2072.	1.2	28
27	Synthesis of SiC/SiO2 core–shell powder by rotary chemical vapor deposition and its consolidation by spark plasma sintering. Ceramics International, 2013, 39, 2605-2610.	4.8	28
28	Dielectric Properties of Poly- and Single-Crystalline BaTi ₂ O ₅ . Materials Transactions, 2006, 47, 2898-2903.	1.2	27
29	High-speed deposition of titanium carbide coatings by laser-assisted metal–organic CVD. Materials Research Bulletin, 2013, 48, 2766-2770.	5.2	27
30	Preparation of cubic Li7La3Zr2O12 solid electrolyte using a nano-sized core–shell structured precursor. Journal of Alloys and Compounds, 2015, 644, 793-798.	5.5	27
31	High-speed deposition of yttria stabilized zirconia by MOCVD. Surface and Coatings Technology, 2004, 187, 238-244.	4.8	26
32	Experimental study of Moss–T2, Moss–Mo3Si–T2, and Mo3Si–T2 eutectic reactions in Mo-rich Mo–Siâ alloys. Journal of Alloys and Compounds, 2014, 594, 52-59.	€"B 5.5	26
33	Effect of microstructure on mechanical, electrical and thermal properties of B4C-HfB2 composites prepared by arc melting. Journal of the European Ceramic Society, 2016, 36, 3929-3937.	5.7	26
34	Laser chemical vapor deposition of SiC films with CO2 laser. Journal of Alloys and Compounds, 2010, 502, 238-242.	5.5	25
35	Thermal and Electrical Transport Properties of Zr-Based Bulk Metallic Glassy Alloys with High Glass-Forming Ability. Materials Transactions, 2012, 53, 1721-1725.	1.2	25
36	Microstructure and dielectric response of (1Â1Â1)-oriented tetragonal BaTiO ₃ thick films prepared by laser chemical vapor deposition. Journal of Asian Ceramic Societies, 2013, 1, 197-201.	2.3	25

#	Article	IF	CITATIONS
37	Ultraâ€Fast Fabrication of <110>â€Oriented βâ€SiC Wafers by Halide <scp>CVD</scp> . Journal of the American Ceramic Society, 2016, 99, 84-88.	3.8	25
38	Preparation of TiB ₂ –SiC Eutectic Composite by an Arc-Melted Method and Its Characterization. Materials Transactions, 2005, 46, 2504-2508.	1.2	24
39	Rod-like eutectic structure of arc-melted TiB2–TiC N1â^' composite. Journal of the European Ceramic Society, 2014, 34, 2089-2094.	5.7	24
40	Oxidation Behavior of ZrB ₂ –SiC Composites at Low Pressures. Journal of the American Ceramic Society, 2015, 98, 214-222.	3.8	24
41	Structure and electrical properties of BCZT ceramics derived from microwave-assisted sol–gel-hydrothermal synthesized powders. Scientific Reports, 2020, 10, 20352.	3.3	24
42	Preparation of TiC-TiB ₂ -SiC Ternary Eutectic Composites by Arc-Melting and Their Characterizations. Materials Transactions, 2006, 47, 1193-1197.	1.2	23
43	Preparation of Hydroxyapatite and Calcium Phosphate Films by MOCVD. Materials Transactions, 2007, 48, 3149-3153.	1.2	23
44	Microstructure and mechanical properties of B4C–HfB2–SiC ternary eutectic composites prepared by arc melting. Journal of the European Ceramic Society, 2016, 36, 959-966.	5.7	23
45	Preparation of highly oriented β-SiC bulks by halide laser chemical vapor deposition. Journal of the European Ceramic Society, 2017, 37, 509-515.	5.7	23
46	Mechanical, electrical and thermal properties of ZrC-ZrB2-SiC ternary eutectic composites prepared by arc melting. Journal of the European Ceramic Society, 2018, 38, 3759-3766.	5.7	23
47	Structural and electrical properties of BCZT ceramics synthesized by sol–gel process. Journal of Materials Science: Materials in Electronics, 2018, 29, 7592-7599.	2.2	23
48	MoO3 nanoparticle formation on zeolitic imidazolate framework-8 by rotary chemical vapor deposition. Microporous and Mesoporous Materials, 2018, 267, 185-191.	4.4	23
49	Microstructure and Preferred Orientation of Titanium Nitride Films Prepared by Laser CVD. Materials Transactions, 2009, 50, 2028-2034.	1.2	22
50	Amorphous-like nanocrystalline Î ³ -Al2O3 films prepared by MOCVD. Surface and Coatings Technology, 2010, 204, 2170-2174.	4.8	22
51	Highly (100)-oriented CeO2 films prepared on amorphous substrates by laser chemical vapor deposition. Thin Solid Films, 2010, 519, 1-4.	1.8	22
52	Fast synthesis of high-quality large-area graphene by laser CVD. Applied Surface Science, 2018, 445, 204-210.	6.1	22
53	Thermal Cycle Resistance of Yttria Stabilized Zirconia Coatings Prepared by MO-CVD. Materials Transactions, 2005, 46, 1318-1323.	1.2	21
	Effect of Ta Content on Phase Structure and Electrical Properties of Piezoelectric Leadâ€Free		

Effect of Ta Content on Phase Structure and Electrical Properties of Piezoelectric Leadâ€Free [(Na_{0.535}K_{0.480})_{0.942}Li_{0.058}](Nb_{1â^'<i>x</i>}Ta®sub><i2x</i></sub> Ceramics. Journal of the American Ceramic Society, 2008, 91, 3440-3443.

#	Article	IF	CITATIONS
55	Optimization of Energy Storage Properties in Lead-Free Barium Titanate-Based Ceramics <i>via</i> B-Site Defect Dipole Engineering. ACS Sustainable Chemistry and Engineering, 2022, 10, 2930-2937.	6.7	21
56	Hydroxyapatite Formation on CaTiO ₃ Film Prepared by Metal-Organic Chemical Vapor Deposition. Materials Transactions, 2007, 48, 1505-1510.	1.2	20
57	High-speed preparation of c-axis-oriented YBa2Cu3O7-δfilm by laser chemical vapor deposition. Materials Letters, 2010, 64, 102-104.	2.6	20
58	Preparation of Magnéli phases of Ti27O52 and Ti6O11 films by laser chemical vapor deposition. Thin Solid Films, 2010, 518, 6927-6932.	1.8	20
59	High-speed epitaxial growth of BaTi2O5 thick films and their in-plane orientations. Applied Surface Science, 2012, 259, 178-185.	6.1	20
60	Preparation of rutile TiO2 thin films by laser chemical vapor deposition method. Journal of Advanced Ceramics, 2013, 2, 162-166.	17.4	20
61	Spark plasma sintering of Al2O3–Ni nanocomposites using Ni nanoparticles produced by rotary chemical vapour deposition. Journal of the European Ceramic Society, 2014, 34, 435-441.	5.7	20
62	Transparent highly oriented 3C-SiC bulks by halide laser CVD. Journal of the European Ceramic Society, 2018, 38, 3057-3063.	5.7	20
63	Preparation of highly (100)-oriented CeO2 films on polycrystalline Al2O3 substrates by laser chemical vapor deposition. Surface and Coatings Technology, 2010, 204, 3619-3622.	4.8	19
64	Fast epitaxial growth of a-axis- and c-axis-oriented YBa2Cu3O7â^' films on (1 0 0) LaAlO3 substrate by laser chemical vapor deposition. Applied Surface Science, 2011, 257, 4317-4320.	6.1	19
65	Densification of SiO2–cBN composites by using Ni nanoparticle and SiO2 nanolayer coated cBN powder. Ceramics International, 2012, 38, 4961-4966.	4.8	19
66	Enhancement of adhesive strength of hydroxyapatite films on Ti–29Nb–13Ta–4.6Zr by surface morphology control. Journal of the Mechanical Behavior of Biomedical Materials, 2013, 18, 232-239.	3.1	19
67	Enhanced thermoelectric performance of xMoS2–TiS2 nanocomposites. Journal of Alloys and Compounds, 2016, 666, 346-351.	5.5	19
68	Microstructural evolution and mechanical behavior of W-Si-C multi-phase composite prepared by arc-melting. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 712, 28-36.	5.6	19
69	Construction of macroporous magnesium phosphate-based bone cement with sustained drug release. Materials and Design, 2021, 200, 109466.	7.0	19
70	Instantaneous photoinitiated synthesis and rapid pulsed photothermal treatment of three-dimensional nanostructured TiO ₂ thin films through pulsed light irradiation. Journal of Materials Research, 2017, 32, 1701-1709.	2.6	18
71	Effect of CH4/SiCl4 ratio on the composition and microstructure of ã€^110〉-oriented β-SiC bulks by halide CVD. Journal of the European Ceramic Society, 2017, 37, 1217-1223.	5.7	18
72	Structural and electrical properties of BCZT ceramics synthesized by sol–gel-hydrothermal process at low temperature. Journal of Materials Science: Materials in Electronics, 2019, 30, 12197-12203.	2.2	18

#	Article	IF	CITATIONS
73	Influence of spark plasma sintering conditions on microstructure, carbon contamination, and transmittance of CaF2 ceramics. Journal of the European Ceramic Society, 2022, 42, 245-257.	5.7	18
74	Preparation Conditions of CaTiO ₃ Film by Metal-Organic Chemical Vapor Deposition. Materials Transactions, 2006, 47, 1386-1390.	1.2	17
75	Evaluation of Grainâ€Boundary Conduction of Dense AlN–SiC Solid Solution by Scanning Nonlinear Dielectric Microscopy. Journal of the American Ceramic Society, 2010, 93, 4026-4029.	3.8	17
76	High-speed epitaxial growth of (100)-oriented CeO2 film on r-cut sapphire by laser chemical vapor deposition. Surface and Coatings Technology, 2011, 205, 4079-4082.	4.8	17
77	Preparation of (020)-oriented BaTi2O5 thick films and their dielectric responses. Journal of the European Ceramic Society, 2012, 32, 2459-2467.	5.7	17
78	Electrically conducting graphene/SiC(111) composite coatings by laser chemical vapor deposition. Carbon, 2018, 139, 76-84.	10.3	17
79	Laser CVD growth of graphene/SiC/Si nano-matrix heterostructure with improved electrochemical capacitance and cycle stability. Carbon, 2021, 175, 377-386.	10.3	17
80	Hydroxyapatite Formation on Ca-P-O Coating Prepared by MOCVD. Materials Transactions, 2008, 49, 1848-1852.	1.2	16
81	SiC–SiO2 nanocomposite films prepared by laser CVD using tetraethyl orthosilicate and acetylene as precursors. Materials Letters, 2010, 64, 2151-2154.	2.6	16
82	Highâ€speed heteroepitaxial growth of 3C‣iC (111) thick films on Si (110) by laser chemical vapor deposition. Journal of the American Ceramic Society, 2018, 101, 1048-1057.	3.8	16
83	Morphology and mechanical behavior of diamond films fabricated by IH-MPCVD. RSC Advances, 2018, 8, 16061-16068.	3.6	16
84	Ferroelectric BaTi2O5 thin film prepared by laser ablation. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2007, 25, 304-307.	2.1	15
85	Dome-like and dense SiC-SiO2 nanocomposite films synthesized by laser chemical vapor deposition using CO2 laser. Surface and Coatings Technology, 2011, 205, 2818-2822.	4.8	15
86	Dielectric properties of Ba4Ti13O30 film prepared by laser chemical vapor deposition. Journal of Materials Science, 2012, 47, 1559-1561.	3.7	15
87	Quantitative evaluation of the oxidation behavior of ZrB2-15Âvol.%SiC at a low oxygen partial pressure. Vacuum, 2013, 88, 98-102.	3.5	15
88	Effect of laser power on orientation and microstructure of TiO2 films prepared by laser chemical vapor deposition method. Materials Letters, 2013, 93, 179-182.	2.6	15
89	Sintering behavior, microstructure, and thermal conductivity of dense AlN ceramics processed by spark plasma sintering with Y2O3–CaO–B additives. Ceramics International, 2015, 41, 1897-1901.	4.8	15
90	Fineâ€grained 3C‣iC thick films prepared via hybrid laser chemical vapor deposition. Journal of the American Ceramic Society, 2019, 102, 5668-5678.	3.8	15

#	Article	IF	CITATIONS
91	Dielectric Property of Polycrystalline ZrO ₂ Substituted BaTi ₂ O ₅ Prepared by Arc-Melting. Materials Transactions, 2008, 49, 120-124.	1.2	14
92	Orientation control of .ALPHAAl2O3 films prepared by laser chemical vapor deposition using a diode laser. Journal of the Ceramic Society of Japan, 2010, 118, 366-369.	1.1	14
93	Influence of laser power on the orientation and microstructure of CeO2 films deposited on Hastelloy C276 tapes by laser chemical vapor deposition. Applied Surface Science, 2010, 256, 6395-6398.	6.1	14
94	High-speed growth of YBa ₂ Cu ₃ O _{7 â^' Î} film with high critical temperature on MgO single crystal substrate by laser chemical vapor deposition. Superconductor Science and Technology, 2010, 23, 125010.	3.5	14
95	High Hardness and Ductile Mosaic <scp><scp>SiC</scp></scp> / <scp>SiO</scp> ₂ Composite by Spark Plasma Sintering. Journal of the American Ceramic Society, 2014, 97, 681-683.	3.8	14
96	Preparation of Rutile and Anatase TiO ₂ Films by MOCVD. Materials Science Forum, 2005, 475-479, 1219-1222.	0.3	13
97	High Temperature Stability of Anatase Films Prepared by MOCVD. Materials Transactions, 2008, 49, 2040-2046.	1.2	13
98	Thermoelectric Properties of Sr-Ru-O Compounds Prepared by Spark Plasma Sintering. Materials Transactions, 2008, 49, 600-604.	1.2	13
99	Preparation of silicon oxycarbide films by laser ablation of SiO/3C–SiC multicomponent targets. Applied Surface Science, 2010, 257, 1703-1706.	6.1	13
100	Preparation of Ba–Ti–O films by laser chemical vapor deposition. Materials Chemistry and Physics, 2012, 133, 398-404.	4.0	13
101	Crystal growth of BaTi2O5 by the floating zone method. Journal of Crystal Growth, 2013, 384, 66-70.	1.5	13
102	Comparison of CVD-deposited Ni and dry-blended Ni powder as sintering aids for TiN powder. Journal of the European Ceramic Society, 2014, 34, 1955-1961.	5.7	13
103	Long-Range Ordered Structure of Ti-B-C-N in a TiB2 -TiC x N1â^'x Eutectic Composite. Journal of the American Ceramic Society, 2014, 97, 2423-2426.	3.8	13
104	Transfer-free growth of graphene on Al2O3 (0001) using a three-step method. Carbon, 2018, 131, 10-17.	10.3	13
105	Nanoforest of 3C–SiC/graphene by laser chemical vapor deposition with high electrochemical performance. Journal of Power Sources, 2019, 444, 227308.	7.8	13
106	Epitaxial growth and electrical performance of graphene/3C–SiC films by laser CVD. Journal of Alloys and Compounds, 2020, 826, 154198.	5.5	13
107	Thickness-dependent microstructural properties of heteroepitaxial (00.1) CuFeO2 thin films on (00.1) sapphire by pulsed laser deposition. Journal of Applied Physics, 2020, 127, 065301.	2.5	13
108	Precipitation of Ni nanoparticle on Al ₂ O ₃ powders by novel rotary chemical vapor deposition. Journal of the Ceramic Society of Japan, 2013, 121, 226-229.	1.1	12

#	Article	IF	CITATIONS
109	Structural study of βâ€&iC(001) films on Si(001) by laser chemical vapor deposition. Journal of the American Ceramic Society, 2017, 100, 1634-1641.	3.8	12
110	Effect of solution concentration on low-temperature synthesis of BCZT powders by sol–gel-hydrothermal method. Journal of Sol-Gel Science and Technology, 2020, 94, 205-212.	2.4	12
111	Transmittance enhancement of spark plasma sintered CaF2 ceramics by preheating commercial powder. Journal of the European Ceramic Society, 2021, 41, 4609-4617.	5.7	12
112	Structural and optical properties of BaTi2O5 thin films prepared by pulsed laser deposition at different substrate temperatures. Materials Chemistry and Physics, 2009, 113, 130-134.	4.0	11
113	Preparation of polycrystalline BaTi2O5 ferroelectric ceramics. Materials Letters, 2009, 63, 2280-2282.	2.6	11
114	Effect of NH3 on the preparation of TiNx films by laser CVD using tetrakis-diethylamido-titanium. Journal of Alloys and Compounds, 2009, 485, 451-455.	5.5	11
115	Apatite formation behavior on bio-ceramic films prepared by MOCVD. Journal of the Ceramic Society of Japan, 2009, 117, 461-465.	1.1	11
116	Fabrication of Hydroxyapatite Film on Ti-29Nb-13Ta-4.6Zr Using a MOCVD Technique. Materials Transactions, 2010, 51, 2277-2283.	1.2	11
117	Thermoelectric properties of Sr–Ir–O compounds prepared by spark plasma sintering. Journal of Alloys and Compounds, 2010, 491, 441-446.	5.5	11
118	High Temperature Mechanical Properties of Dense <scp><scp>AlN–SiC</scp></scp> Ceramics Fabricated by Spark Plasma Sintering Without Sintering Additives. Journal of the American Ceramic Society, 2011, 94, 4150-4153.	3.8	11
119	Apatite formation in Hanks' solution on β-Ca2SiO4 films prepared by MOCVD. Surface and Coatings Technology, 2011, 206, 172-177.	4.8	11
120	Fast preparation of (111)â€oriented βâ€5iC films without carbon formation by laser chemical vapor deposition from hexamethyldisilane without H ₂ . Journal of the American Ceramic Society, 2018, 101, 1471-1478.	3.8	11
121	Structural Controlling of Highly-Oriented Polycrystal 3C-SiC Bulks via Halide CVD. Materials, 2019, 12, 390.	2.9	11
122	Laser-induced growth of large-area epitaxial graphene with low sheet resistance on 4H-SiC(0001). Applied Surface Science, 2020, 514, 145938.	6.1	11
123	Dielectric Properties of Poly- and Single-Crystalline Ba _{1−<1>x<!--1-->} Sr<1> _x Ti ₂ O ₅ . Materials Transactions, 2007, 48, 984-989.	1.2	10
124	Dielectric properties of (010) oriented polycrystalline Ta2O5 substituted BaTi2O5 prepared by arc melting. Journal of the Ceramic Society of Japan, 2008, 116, 436-440.	1,1	10
125	Preparation of polycrystalline BaTi2O5 by pressureless sintering. Materials Research Bulletin, 2009, 44, 468-471.	5.2	10
126	Thermoelectricity of CalrO3 ceramics prepared by spark plasma sintering. Journal of the Ceramic Society of Japan, 2009, 117, 466-469.	1.1	10

#	Article	IF	CITATIONS
127	Evaluation of <scp>CVD</scp> â€Deposited <scp><scp>SiO</scp></scp> ₂ as a Sintering Aid for Cubic Boron Nitride Consolidated with Alumina by Spark Plasma Sintering. Journal of the American Ceramic Society, 2012, 95, 2827-2832.	3.8	10
128	Preparation of Li–Co–O film by metal organic chemical vapor deposition. Journal of the Ceramic Society of Japan, 2013, 121, 406-410.	1.1	10
129	Spark Plasma Sintering and Characterization of WC-Co-cBN Composites. Key Engineering Materials, 0, 616, 194-198.	0.4	10
130	Preparation of Li–Al–O films by laser chemical vapor deposition. Materials Chemistry and Physics, 2014, 143, 1338-1343.	4.0	10
131	Energy-filtering-induced high power factor in PbS-nanoparticles-embedded TiS2. AIP Advances, 2015, 5, .	1.3	10
132	Elimination of double position domains (DPDs) in epitaxial ã€^111〉-3C-SiC on Si(111) by laser CVD. Applied Surface Science, 2017, 426, 662-666.	6.1	10
133	Morphological Evolution of Vertically Standing Molybdenum Disulfide Nanosheets by Chemical Vapor Deposition. Materials, 2018, 11, 631.	2.9	10
134	MoS2 coating on CoSx-embedded nitrogen-doped-carbon-nanosheets grown on carbon cloth for energy conversion. Journal of Alloys and Compounds, 2019, 806, 1276-1284.	5.5	10
135	One-step chemical vapor deposition fabrication of Ni@NiO@graphite nanoparticles for the oxygen evolution reaction of water splitting. RSC Advances, 2022, 12, 10496-10503.	3.6	10
136	Preparations of CaRuO ₃ Body by Plasma Sintering and Its Thermoelectric Properties. Materials Transactions, 2007, 48, 1529-1533.	1.2	9
137	A. C. Impedance Analysis on b-axis Oriented Ba1-xSrxTi2O5 Prepared by an Arc-Melting Method. Journal of the Ceramic Society of Japan, 2007, 115, 648-653.	1.1	9
138	Thermoelectric Properties of Ca-Ir-O Compounds Prepared by Spark Plasma Sintering. Materials Transactions, 2009, 50, 853-858.	1.2	9
139	Phase Formation and Solidification Routes Near Mo-Mo ₅ SiB ₂ Eutectic Point in Mo-Si-B System. Materials Transactions, 2010, 51, 1699-1704.	1.2	9
140	Microstructural Evolution of Mo-Si-B Ternary Alloys through Heat Treatment at 1800°C. Advanced Materials Research, 0, 278, 527-532.	0.3	9
141	Synergetic effect of Re alloying and SiC addition on strength and toughness of tungsten. Journal of Alloys and Compounds, 2018, 767, 1064-1071.	5.5	9
142	Growth of umbrella-like millimeter-scale single-crystalline graphene on liquid copper. Carbon, 2019, 150, 356-362.	10.3	9
143	Preparation of Pyrochlore Ca ₂ Ti ₂ O ₆ by Metal-Organic Chemical Vapor Deposition. Materials Transactions, 2006, 47, 2603-2605.	1.2	8
144	Use of Post-heat Treatment to Obtain a 2H Solid Solution in Spark Plasma Sintering-Processed AlN–SiC Mixtures. Journal of the American Ceramic Society, 2008, 91, 1548-1552.	3.8	8

#	Article	IF	CITATIONS
145	Indentation Deformation and Microcracking in βâ€ <scp><scp>Si</scp></scp> ₃ <scp>N</scp> ₄ â€Based Nanoceramic. Journal of the American Ceramic Society, 2012, 95, 1421-1428.	3.8	8
146	Effects of laser power on the growth of polycrystalline AlN films by laser chemical vapor deposition method. Surface and Coatings Technology, 2013, 232, 1-5.	4.8	8
147	Precipitation of Ni and NiO nanoparticle catalysts on zeolite and mesoporous silica by rotary chemical vapor deposition. Journal of the Ceramic Society of Japan, 2013, 121, 891-894.	1.1	8
148	Surface Modification of Silicon Carbide Powder with Silica Coating by Rotary Chemical Vapor Deposition. Key Engineering Materials, 0, 616, 232-236.	0.4	8
149	Stoichiometric controlling of boroncarbonitride thin films with using BN-C dual-targets. AIP Advances, 2015, 5, 047125.	1.3	8
150	Morphology controlling of ã€^111〉-3C–SiC films by HMDS flow rate in LCVD. RSC Advances, 2019, 9, 2426-2430.	3.6	8
151	Growth of self-aligned single-crystal vanadium carbide nanosheets with a controllable thickness on a unique staked metal substrate. Applied Surface Science, 2020, 499, 143998.	6.1	8
152	Phase Orientation of a TiC-TiB ₂ -SiC Ternary Eutectic Composite Prepared by An FZ Method. Materials Science Forum, 2007, 534-536, 1057-1060.	0.3	7
153	Effect of CaO and ZrO2 co-substitution on dielectric properties of BaTi2O5 prepared by arc melting. Journal of the Ceramic Society of Japan, 2009, 117, 435-438.	1.1	7
154	Ultra-fast epitaxial growth of β-SiC films on α(4H)-SiC using hexamethyldisilane (HMDS) at low temperature. Ceramics International, 2016, 42, 4632-4635.	4.8	7
155	Synthesis of Cr2AlC from Elemental Powders with Modified Pressureless Spark Plasma Sintering. Journal Wuhan University of Technology, Materials Science Edition, 2019, 34, 287-292.	1.0	7
156	Microstructure and texture of polycrystalline 3C–SiC thick films characterized via EBSD. Ceramics International, 2020, 46, 27000-27009.	4.8	7
157	Self-supported MoSx/V2O3 heterostructures as efficient hybrid catalysts for hydrogen evolution reaction. Journal of Alloys and Compounds, 2020, 827, 154262.	5.5	7
158	In situ synthesis of V2O3@Ni as an efficient hybrid catalyst for the hydrogen evolution reaction in alkaline and neutral media. International Journal of Hydrogen Energy, 2021, 46, 9101-9109.	7.1	7
159	Hydroxyapatite Formation on Calcium Phosphate Coated Titanium. Materials Science Forum, 2007, 561-565, 1513-1516.	0.3	6
160	Thermoelectric properties of alkaline earth ruthenates prepared by SPS. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2009, 161, 71-75.	3.5	6
161	Biomechanical Evaluation of Amorphous Calcium Phosphate Coated TNTZ Implants Prepared Using a Radiofrequency Magnetron Sputtering System. Materials Transactions, 2012, 53, 1343-1348.	1.2	6
162	Preparation and characterization of transparent Bi3.6Ho0.4Ti3O12/ZnO:Al ferroelectric-semiconductor heterostructure by pulsed laser deposition. Materials Letters, 2012, 79, 173-176.	2.6	6

#	Article	IF	CITATIONS
163	Highly (100)-oriented Ce1â^'xFexO2â^'î´ solid solution films prepared by laser chemical vapor deposition. Thin Solid Films, 2012, 520, 1851-1855.	1.8	6
164	Preparation of the c-axis oriented AlN film by laser chemical vapor deposition using a newly proposed Al(acac)3 precursor. Journal of Crystal Growth, 2013, 365, 1-5.	1.5	6
165	High-Speed Deposition of SiC Thick Film by Halide Precursor. Key Engineering Materials, 0, 616, 37-42.	0.4	6
166	Heteroepitaxial growth of thick 3Câ€SiC (110) films by Laser CVD. Journal of the American Ceramic Society, 2019, 102, 4480-4491.	3.8	6
167	Mechanical properties of high-crystalline diamond films grown via laser MPCVD. Diamond and Related Materials, 2020, 109, 108094.	3.9	6
168	Growth mechanism of porous 3C–SiC films prepared via laser chemical vapor deposition. Ceramics International, 2020, 46, 16518-16523.	4.8	6
169	Eutectic Ceramic Composites by Melt-Solidification. Journal of the Korean Ceramic Society, 2019, 56, 331-339.	2.3	6
170	Self-Healing of SiC-Al2O3-B4C Ceramic Composites at Low Temperatures. Materials, 2022, 15, 652.	2.9	6
171	Hydroxyapatite Formation on MOCVD-CaTiO ₃ Coated Ti. Key Engineering Materials, 2007, 352, 301-304.	0.4	5
172	Passive Oxidation Behavior of ZrB ₂ -SiC Eutectic Composite Prepared by Arc Melting. Key Engineering Materials, 0, 403, 217-220.	0.4	5
173	Dielectric Properties of Ba _{1−<i>x</i>} Ca <i>_x</i> Ti ₂ O ₅ Prepared by Arc Melting. Materials Transactions, 2009, 50, 245-248.	1.2	5
174	Precipitation Behavior in a Hanks' Solution on Ca-P-O Films Prepared by Laser CVD. Materials Transactions, 2009, 50, 2455-2459.	1.2	5
175	Effect of annealing temperature on multiferroic properties of Bi0.85Nd0.15FeO3 thin films prepared by sol-gel method. Science China Technological Sciences, 2010, 53, 1572-1575.	4.0	5
176	Laser chemical vapor deposition of TiN film on Ti(C,N)-based cermet substrate using Ti(OiPr)2(dpm)2-NH3 system. Journal of the Ceramic Society of Japan, 2011, 119, 310-313.	1.1	5
177	Preparation of Ni-cBN composites by spark plasma sintering. Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy, 2012, 59, 410-271.	0.2	5
178	Effect of laser power on microstructure and dielectric properties of BaTi5O11 films prepared by laser chemical vapor deposition method. Journal of Materials Science: Materials in Electronics, 2012, 23, 1961-1964.	2.2	5
179	Preparation of ultra-thick Î ² -SiC films using different carbon sources. Materials Research Innovations, 2015, 19, S10-397-S10-402.	2.3	5
180	Effect of Pressure on Microstructure of <111>â€Oriented βâ€SiC Films: Research via Electron Backscatter Diffraction. Journal of the American Ceramic Society, 2015, 98, 3713-3718.	3.8	5

#	Article	IF	CITATIONS
181	The effect of diluent gases on the growth of <i>β</i> -SiC films by laser CVD with HMDS. Materials Research Innovations, 2015, 19, S10-403-S10-407.	2.3	5
182	Oriented growth and electrical property of LiAl ₅ 0 ₈ film by laser chemical vapor deposition. Journal of the Ceramic Society of Japan, 2016, 124, 111-115.	1.1	5
183	Dielectric properties of BaTi2O5 thick films prepared on Pt-coated MgO(110) single-crystal substrate by laser chemical vapor deposition. Ceramics International, 2016, 42, 11464-11467.	4.8	5
184	Synthesis of large size uniform single-crystalline trilayer graphene on premelting copper. Carbon, 2017, 122, 352-360.	10.3	5
185	Mechanical, electrical and thermal properties at elevated temperature of W-Si-C multi-phase composite prepared by arc-melting. International Journal of Refractory Metals and Hard Materials, 2018, 75, 101-106.	3.8	5
186	Structural investigation of Al ₂ O ₃ coatings by <scp>PECVD</scp> with a high deposition rate. International Journal of Applied Ceramic Technology, 2019, 16, 1356-1363.	2.1	5
187	Effect of hydrogen flow on microtwins in 3C–SiC epitaxial films by laser chemical vapor deposition. Thin Solid Films, 2019, 678, 8-15.	1.8	5
188	A high-throughput synthesis of large-sized single-crystal hexagonal boron nitride on a Cu–Ni gradient enclosure. RSC Advances, 2020, 10, 16088-16093.	3.6	5
189	Deposition-temperature dependence of structure, ferroelectric property and conduction mechanism of BCZT epitaxial films. Ceramics International, 2021, 47, 3195-3200.	4.8	5
190	Fabrication of porous SiC nanostructured coatings on C/C composite by laser chemical vapor deposition for improving the thermal shock resistance. Ceramics International, 2022, , .	4.8	5
191	Heterostructured Co3O4/VO2 nanosheet array catalysts on carbon cloth for hydrogen evolution reaction. International Journal of Hydrogen Energy, 2022, 47, 18983-18991.	7.1	5
192	Overcoming the Dilemma between Low Electrical Resistance and High Corrosion Resistance Using a Ta/(Ta,Ti)N/TiN/Ti Multilayer for Proton Exchange Membrane Fuel Cells. Coatings, 2022, 12, 689.	2.6	5
193	Corrosion Behavior of Hastelloy-XR Alloy in O ₂ and SO ₂ Atmosphere. Materials Transactions, 2005, 46, 1882-1889.	1.2	4
194	High Temperature Oxidation Behavior of MoSi ₂ under Low Pressure Atmosphere. Materials Science Forum, 2007, 561-565, 427-430.	0.3	4
195	"High Piezoelectric d33 Coefficient in Li/Ta/Sb-Codoped Lead-Free (Na,K)NbO3Ceramics Sintered at Optimal Temperature― Journal of the American Ceramic Society, 2008, 91, 3824-3824.	3.8	4
196	Characterization of Ferroelectric Na <i>_x</i> K _{1−<i>x</i>} NbO ₃ System Films Prepared by Pulsed Laser Deposition. Materials Transactions, 2008, 49, 2076-2081.	1.2	4
197	Laser chemical vapor deposition of titanium nitride films with tetrakis (diethylamido) titanium and ammonia system. Surface and Coatings Technology, 2010, 204, 2111-2117.	4.8	4
198	A ramsayite-type oxide, Ca ₂ Sn ₂ Al ₂ O ₉ . Acta Crystallographica Section E: Structure Reports Online, 2010, 66, i72-i72.	0.2	4

#	Article	IF	CITATIONS
199	Oxidation Behavior of ZrB ₂ -15vol.%SiC at an Oxygen Partial Pressure of 57 Pa. Key Engineering Materials, 2011, 484, 21-25.	0.4	4
200	(006)-oriented α-Al2O3 films prepared in CO2–H2 atmosphere by laser chemical vapor deposition using a diode laser. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2011, 176, 984-989.	3.5	4
201	Microcolumnar and Granular Structures of TiO ₂ Films Prepared by Laser CVD Using Nd:YAG Laser. Key Engineering Materials, 2012, 508, 287-290.	0.4	4
202	Cubic boron nitride-containing ceramic matrix composites for cutting tools. , 2014, , 570-586.		4
203	Effect of Al ₂ O ₃ on Microstructure and Ionic Conductivity of Li ₇ La ₃ Zr ₂ O _{₁₂} Solid Electrolytes Prepared by Plasma Activated Sintering. Key Engineering Materials, 2014, 616, 217-222.	0.4	4
204	Preparation of B ₄ C–ZrB ₂ –SiC ternary eutectic composites by arc melting and their properties. Materials Research Innovations, 2015, 19, S10-26-S10-29.	2.3	4
205	Morphology study of oriented SmBCO film deposited by MOCVD. Journal Wuhan University of Technology, Materials Science Edition, 2016, 31, 15-19.	1.0	4
206	Effect of precursors' ratio on c -axis-oriented SmBCO film by MOCVD. Ceramics International, 2017, 43, S488-S492.	4.8	4
207	Thickness dependence of structure and superconductivity of the SmBa ₂ Cu ₃ O ₇ film by laser CVD. RSC Advances, 2017, 7, 56166-56172.	3.6	4
208	Epitaxial growth of 3C–SiC on Si(111) and (001) by laser CVD. Journal of the American Ceramic Society, 2018, 101, 3850-3856.	3.8	4
209	Epitaxial growth of 3C-SiC (111) on Si via laser CVD carbonization. Journal of Asian Ceramic Societies, 2019, 7, 312-320.	2.3	4
210	Microstructure and Oxidation Behavior of Metal V Films Deposited by Magnetron Sputtering. Materials, 2019, 12, 425.	2.9	4
211	AlB12-AlB12C2-TiB2 hard and tough composites synthesized by reactive plasma activated sintering. Ceramics International, 2020, 46, 5856-5862.	4.8	4
212	Fabrication of (a-nc) boron carbide thin films via chemical vapor deposition using ortho-carborane. Journal of Asian Ceramic Societies, 2020, 8, 327-335.	2.3	4
213	Mechanical, electrical and thermal properties of HfC-HfB2-SiC ternary eutectic composites prepared by arc melting. Journal of the European Ceramic Society, 2021, 41, 6943-6951.	5.7	4
214	Epitaxial Growth of SiC Films on 4H-SiC Substrate by High-Frequency Induction-Heated Halide Chemical Vapor Deposition. Coatings, 2022, 12, 329.	2.6	4
215	High-speed Deposition of Nano-pore Dispersed Zirconia by CVD and Improvement of Thermal Barrier Performance. Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy, 2004, 51, 821-828.	0.2	3
216	Effect of Oxygen Partial Pressure on Structure and Dielectric Property of BaTi ₂ O ₅ Films Prepared by Laser Ablation. Materials Transactions, 2007, 48, 625-628.	1.2	3

#	Article	IF	CITATIONS
217	Preparation of Ca–Si–O films by chemical vapor deposition. Surface and Coatings Technology, 2010, 205, 2618-2623.	4.8	3
218	Ti3SiC2–(Ti3SiC2–SiC) functionally graded materials by spark plasma sintering reactive synthesis method Part 1 – gradient optimizations. Materials Technology, 2010, 25, 276-282.	3.0	3
219	Deposition of .ALPHAAl2O3 films on Ti(C, N)-based cermet substrate by laser chemical vapor deposition using a diode laser. Journal of the Ceramic Society of Japan, 2011, 119, 570-572.	1.1	3
220	Preparation of α-Al ₂ O ₃ /TiN Multilayer Coating on Ti(C,N)-Based Cermet by Laser CVD. Key Engineering Materials, 2011, 484, 188-191.	0.4	3
221	Growth of <i>b</i> -Axis-Oriented BaTi ₂ O ₅ Nanopillars by Laser Chemical Vapor Deposition. Key Engineering Materials, 2012, 508, 185-188.	0.4	3
222	Epitaxial Integration of (100) Bi\$_{4}\$Ti\$_{3}\$O\$_{12}\$ with (0001) ZnO through Long-Range Lattice Matching. Applied Physics Express, 2012, 5, 085801.	2.4	3
223	Preparation of TiO2 thick film by laser chemical vapor deposition method. Journal of Materials Science: Materials in Electronics, 2013, 24, 1758-1763.	2.2	3
224	Effects of C/Si Ratio on the Structure of β-SiC Film by Halide CVD. Key Engineering Materials, 0, 616, 227-231.	0.4	3
225	Consolidation of SiC Powder Coated with SiO ₂ Nanolayer by Spark Plasma Sintering. Key Engineering Materials, 2014, 616, 32-36.	0.4	3
226	Effect of the vacuum degree on the orientation and the microstructure of β-SiC films prepared by laser chemical vapour deposition. Materials Letters, 2016, 182, 81-84.	2.6	3
227	Effect of substrate temperature on the structure and magnetic properties of CoPt/AlN multilayer films. Journal Wuhan University of Technology, Materials Science Edition, 2016, 31, 44-47.	1.0	3
228	Catalytic Decomposition of Nitric Oxide by LaCoO3 Nano-particles Prepared by Rotary CVD. Journal Wuhan University of Technology, Materials Science Edition, 2018, 33, 368-374.	1.0	3
229	Enhanced Thermoelectric Performance of Non-equilibrium Synthesized Fe0.4Co3.6Sb12-xGex Skutterudites via Randomly Distributed Multi-scaled Impurity Dots. Journal Wuhan University of Technology, Materials Science Edition, 2018, 33, 772-777.	1.0	3
230	Dispersion of CeO2 Nanoparticles on Hexagonal Boron Nitride by a Simple CVD Method. Transactions of the Indian Ceramic Society, 2018, 77, 127-131.	1.0	3
231	Growth and carrier transport performance of single-crystalline monolayer graphene over electrodeposited copper film on quartz glass. Ceramics International, 2019, 45, 24254-24259.	4.8	3
232	Fabrication of an ultraâ€thickâ€oriented 3Câ€SiC coating on the inner surface of a graphite tube by highâ€frequency inductionâ€heated halide chemical vapor deposition. International Journal of Applied Ceramic Technology, 2019, 16, 1004-1011.	2.1	3
233	Microstructure and Oxidation Resistance of V Thin Films Deposited by Magnetron Sputtering at Room Temperature. Journal Wuhan University of Technology, Materials Science Edition, 2020, 35, 879-884.	1.0	3
234	In Situ Doping of Nitrogen in <110>-Oriented Bulk 3C-SiC by Halide Laser Chemical Vapour Deposition. Materials, 2020, 13, 410.	2.9	3

#	Article	IF	CITATIONS
235	Effect of TZP nanoparticles synthesized by RCVD on mechanical properties of ZTA composites sintered by SPS. Journal of the European Ceramic Society, 2022, 42, 3550-3558.	5.7	3
236	Sandwich Structure to Enhance the Mechanical and Electrochemical Performance of TaN/(Ta/Ti)/TiN Multilayer Films Prepared by Multi-Arc Ion Plating. Coatings, 2022, 12, 694.	2.6	3
237	Effect of Mo Addition on the Wettability between Ni ₃ Al and TiC. Key Engineering Materials, 2002, 224-226, 501-504.	0.4	2
238	Nano-Structure of YSZ Films Prepared by Laser CVD. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 2005, 69, 12-16.	0.4	2
239	Fabrication and Evaluation of AlN–SiC Solid Solutions with p-Type Electrical Conduction. Key Engineering Materials, 0, 403, 39-42.	0.4	2
240	Preparation of Ca-Ti-O/Ca-P-O Functionally Graded Bio-ceramic Film by MOCVD. Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy, 2008, 55, 325-330.	0.2	2
241	Preparation of Functionally Graded Bio-Ceramic Film by MOCVD. Materials Science Forum, 2009, 631-632, 193-198.	0.3	2
242	Ti3SiC2–(Ti3SiC2–SiC) functionally graded materials by spark plasma sintering reactive synthesis method Part 2 – fabrication and characterization. Materials Technology, 2010, 25, 283-288.	3.0	2
243	Ternary Phase Relation on Preparation of YBa ₂ Cu ₃ O _{7-δ} Films by Laser CVD. Key Engineering Materials, 2011, 484, 183-187.	0.4	2
244	Preparation of Titania Solid Films by Laser CVD Using CO ₂ Laser. Key Engineering Materials, 2012, 508, 279-282.	0.4	2
245	Thermoelectric properties of Ca1â^'xSrxRuO3 compounds prepared by spark plasma sintering. Journal of Alloys and Compounds, 2012, 523, 182-187.	5.5	2
246	Preparation of TiO2-rich Ba-Ti-O thick films by laser chemical vapor deposition method. Journal of Advanced Ceramics, 2013, 2, 167-172.	17.4	2
247	Cubic boron nitride-containing ceramic matrix composites for cutting tools. , 2014, , 655-671.		2
248	Effect of Negative Bias of HiPIMS and AIP Hybrid Deposition on Microstructure, Mechanical and Anti-Corrosive Properties of Cr2N/TiN Multilayer Coatings. Coatings, 2022, 12, 845.	2.6	2
249	Oxidation Behavior of Oxidation-resistive Glass-coated PbTe Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy, 1997, 44, 653-657.	0.2	1
250	Preparation and Corrosion Resistance of Graded Glass Coating on PbTe. Materials Science Forum, 1999, 308-311, 256-261.	0.3	1
251	Corrosion Behavior of Glass Coated Hastelloy-XR in Boiling Sulfuric Acid. Materials Transactions, 2001, 42, 2093-2097.	1.2	1
252	Corrosion Behavior of Ceramics-Coated Hastelloy-XR Alloy in an Ar-SO ₂ Atmosphere. Materials Transactions, 2003, 44, 962-967.	1.2	1

#	Article	IF	CITATIONS
253	Effect of Oxygen Partial Pressure on Electrical Conductivity of Ca-Ru-O Compounds Prepared by Spark Plasma Sintering. Materials Science Forum, 2007, 561-565, 595-598.	0.3	1
254	Nonstoichiometric Composition and Densification of CaRuO ₃ by SPS. Key Engineering Materials, 2007, 352, 251-254.	0.4	1
255	Dielectric Property of Poly- and Single-Crystalline BaTi ₂ O ₅ Co-Substituted with SrO and ZrO ₂ . Key Engineering Materials, 2008, 388, 217-220.	0.4	1
256	Microstructures and mechanical properties of TiN-TiB2-Ti5Si3 composites in-situ fabricated by spark plasma sintering. Journal of the Ceramic Society of Japan, 2009, 117, 1085-1088.	1.1	1
257	Preparation of Ca2Ti2O6pyrochlore films by MOCVD. Journal of Physics: Conference Series, 2009, 152, 012032.	0.4	1
258	Preparation of SiAlON-cBN Composites Using Ni Nanoparticle Precipitated cBN Powders. Key Engineering Materials, 0, 508, 17-20.	0.4	1
259	Effect of laser power on electrical conductivity of BaTi5O11 films prepared by laser chemical vapor deposition method. Journal of Materials Science: Materials in Electronics, 2013, 24, 1941-1946.	2.2	1
260	Fabrication and characterization of CuxSi1â^'x films on Si (111) and Si (100) by pulsed laser deposition. AIP Advances, 2016, 6, .	1.3	1
261	Effects of annealing processes on Cu x Si1-x thin films. Journal Wuhan University of Technology, Materials Science Edition, 2016, 31, 31-34.	1.0	1
262	Epitaxial Growth of Copper Film by MOCVD. Key Engineering Materials, 0, 680, 507-510.	0.4	1
263	NiO spacer mediated magnetic anisotropy in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>L</mml:mi><mml:msub><mml:mi trilayer structures. Physical Review B, 2017, 95, .</mml:mi </mml:msub></mml:mrow></mml:math 	ı>B¢‡mml	:m a > <mml:n< td=""></mml:n<>
264	MoO3NPs/ZIF-8 composite material prepared via RCVD for photodegradation of dyes. Data in Brief, 2018, 19, 2253-2259.	1.0	1
265	Synthesis of Al 2 O 3 coatings on Ti(C, N)â€based cermets by microwave plasma CVD using Al(acac) 3. International Journal of Applied Ceramic Technology, 2019, 16, 2265-2272.	2.1	1
266	Deposition and corrosion behavior of <110>-oriented vanadium thick films by direct current magnetron sputtering. Thin Solid Films, 2021, 721, 138491.	1.8	1
267	Preparation of <i>b</i> -axis Oriented BaTi ₂ O ₅ Thin Films by Pulsed Laser Deposition. Wuji Cailiao Xuebao/Journal of Inorganic Materials, 2008, 23, 553-556.	1.3	1
268	Preparation of Rutile and Anatase TiO ₂ Films by MOCVD. Materials Science Forum, 0, , 1219-1222.	0.3	1
269	High-speed Deposition of Oriented TiN _x Films by Laser Metal-organic Chemical Vapor Deposition. Wuji Cailiao Xuebao/Journal of Inorganic Materials, 2010, 25, 391-395.	1.3	1
270	Influence of oxygen partial pressure on SmBa2Cu3O7-δfilm deposited by laser chemical vapor deposition. Journal of Asian Ceramic Societies, 2021, 9, 197-207.	2.3	1

#	Article	IF	CITATIONS
271	Phase-Selective Synthesis of Mo–Ta–C Ternary Nanosheets by Precisely Tailoring Mo/Ta Atom Ratio on Liquid Copper. Nanomaterials, 2022, 12, 1446.	4.1	1
272	High-throughput growth of HfO ₂ films using temperature-gradient laser chemical vapor deposition. RSC Advances, 2022, 12, 15555-15563.	3.6	1
273	High-temperature oxidation behavior of PbTe and oxidation-resistive glass coating. , 0, , .		0
274	Effect of Glass Composition on the Oxidation Resistivity of Glass-Coated PbTe Journal of the Ceramic Society of Japan, 1999, 107, 591-594.	1.3	0
275	Structure and Electric Property of BaTi ₂ O ₅ Film by Laser Ablation. Key Engineering Materials, 2007, 350, 103-106.	0.4	0
276	A.C. Impedance Spectroscopy of B-Axis Oriented SrO Substituted BaTi ₂ O ₅ Prepared by Arc-Melting. Key Engineering Materials, 2007, 352, 277-280.	0.4	0
277	Epitaxial Growth of B-Axis Oriented BaTi ₂ O ₅ Films by Laser Ablation. Key Engineering Materials, 2007, 352, 311-314.	0.4	0
278	"Effect of Ta Content on Phase Structure and Electrical Properties of Piezoelectric Lead-Free [(Na0.535K0.480)0.942Li0.058](Nb1â^'xTax)O3Ceramics― Journal of the American Ceramic Society, 2008, 91, 3823-3823.	3.8	0
279	Preparation of Stoichiometric TiN _x Films by Laser CVD with Metalorganic Precursor. Advanced Materials Research, 2011, 239-242, 318-321.	0.3	0
280	Fabrication of hydroxyapatite film on Ti–29%Nb–13%Ta–4.6%Zr using a MOCVD technique. Keikinzoku/Journal of Japan Institute of Light Metals, 2011, 61, 24-29.	0.4	0
281	Effect of NH ₃ Atmosphere on Preparation of Al ₂ O ₃ -AlN Composite Film by Laser CVD. Key Engineering Materials, 0, 484, 172-176.	0.4	0
282	Properties of Polycrystalline BaTi ₂ O ₅ Substituted with MgO Prepared by a Floating Zone Method. Advanced Materials Research, 0, 311-313, 1144-1147.	0.3	0
283	Ba ₂ TiO ₄ and Ba ₄ Ti ₁₃ O ₃₀ Thick Films Prepared by Laser Chemical Vapor Deposition and their Microstructure. Key Engineering Materials, 0, 508, 199-202.	0.4	0
284	Preparation of TiO2 Coating on Ti by Microwave Plasma CVD. Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy, 2012, 59, 425-429.	0.2	0
285	Highly (004)-Oriented Texture of γ-LiAlO ₂ Films by Laser Chemical Vapor Deposition. Key Engineering Materials, 0, 616, 141-144.	0.4	0
286	Microstructure of LiAl ₅ O ₈ and LiAlO ₂ Films Prepared by Laser CVD. Key Engineering Materials, 0, 616, 223-226.	0.4	0
287	Effect of oxygen partial pressure on the composition and structure of GdBa2Cu3O7â^î^ by solid state reaction. Materials Research Innovations, 2015, 19, S10-21-S10-25.	2.3	0
288	Effect of Nanosized TiC0.37N0.63on Unlubricated Wear Responses of Si3Nâ€Based Nanocomposites Under Low Hertzian Stress. Journal of the American Ceramic Society, 2016, 99, 971-978.	3.8	0

#	Article	IF	CITATIONS
289	Structural study of epitaxial NdBa2Cu3O7â^'x films by laser chemical vapor deposition. RSC Advances, 2018, 8, 19811-19817.	3.6	0
290	Elimination of Voids at Interface of β-SiC Films and Si Substrate by Laser CVD. Journal Wuhan University of Technology, Materials Science Edition, 2018, 33, 356-362.	1.0	0
291	Synthesis of transfer-free graphene films on dielectric substrates with controllable thickness via an in-situ co-deposition method for electrochromic devices. Ceramics International, 2022, , .	4.8	Ο
292	Growth of self-aligned nonlayered TaC nanosheets on liquid copper by a solid phase diffusion strategy. Materials Today Nano, 2022, , 100237.	4.6	0