Sendurai A Mani

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5228428/publications.pdf

Version: 2024-02-01

31902 22764 25,049 131 53 112 citations h-index g-index papers 141 141 141 31337 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	A panel of emerging EMT genes identified in malignant mesothelioma. Scientific Reports, 2022, 12, 1007.	1.6	14
2	Forkhead Box Transcription Factors: Double-Edged Swords in Cancer. Cancer Research, 2022, 82, 2057-2065.	0.4	29
3	Circulating tumour cells in the -omics era: how far are we from achieving the â€̃singularity'?. British Journal of Cancer, 2022, 127, 173-184.	2.9	23
4	Vimentin and cytokeratin: Good alone, bad together. Seminars in Cancer Biology, 2022, 86, 816-826.	4.3	38
5	In Vitro Quantification of Cancer Stem Cells Using a Mammosphere Formation Assay. Methods in Molecular Biology, 2022, 2429, 509-513.	0.4	1
6	Enrichment of Cancer Stem Cells in a Tumorsphere Assay. Methods in Molecular Biology, 2022, 2429, 501-507.	0.4	2
7	Limiting Dilution Tumor Initiation Assay: An In Vivo Approach for the Study of Cancer Stem Cells. Methods in Molecular Biology, 2022, 2429, 547-554.	0.4	4
8	Role of p38 MAP kinase in cancer stem cells and metastasis. Oncogene, 2022, 41, 3177-3185.	2.6	46
9	EMTome: a resource for pan-cancer analysis of epithelial-mesenchymal transition genes and signatures. British Journal of Cancer, 2021, 124, 259-269.	2.9	115
10	The Non-Coding RNA Journal Club: Highlights on Recent Papers-8. Non-coding RNA, 2021, 7, 23.	1.3	0
11	CD8+ T cells inhibit metastasis and CXCL4 regulates its function. British Journal of Cancer, 2021, 125, 176-189.	2.9	21
12	Breast cancer dormancy: need for clinically relevant models to address current gaps in knowledge. Npj Breast Cancer, 2021, 7, 66.	2.3	35
13	Identification of EMT signaling cross-talk and gene regulatory networks by single-cell RNA sequencing. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118 , .	3.3	134
14	Morphological screening of mesenchymal mammary tumor organoids to identify drugs that reverse epithelial-mesenchymal transition. Nature Communications, 2021, 12, 4262.	5.8	24
15	Single-Cell Cloning of Breast Cancer Cells Secreting Specific Subsets of Extracellular Vesicles. Cancers, 2021, 13, 4397.	1.7	19
16	A proteogenomic portrait of lung squamous cell carcinoma. Cell, 2021, 184, 4348-4371.e40.	13.5	170
17	Dextran Sulfate Polymer Wafer Promotes Corneal Wound Healing. Pharmaceutics, 2021, 13, 1628.	2.0	3
18	Epithelial-to-Mesenchymal Plasticity in Circulating Tumor Cell Lines Sequentially Derived from a Patient with Colorectal Cancer. Cancers, 2021, 13, 5408.	1.7	18

#	Article	IF	Citations
19	UDP-glucose 6-dehydrogenase regulates hyaluronic acid production and promotes breast cancer progression. Oncogene, 2020, 39, 3089-3101.	2.6	37
20	Guidelines and definitions for research on epithelial–mesenchymal transition. Nature Reviews Molecular Cell Biology, 2020, 21, 341-352.	16.1	1,195
21	Editorial: Characterizing the Multi-Faceted Dynamics of Tumor Cell Plasticity. Frontiers in Molecular Biosciences, 2020, 7, 630276.	1.6	0
22	Abstract 5443: Modulating plasticity in aggressive variant prostate cancers., 2020,,.		0
23	A possible role for epigenetic feedback regulation in the dynamics of the epithelial–mesenchymal transition (EMT). Physical Biology, 2019, 16, 066004.	0.8	81
24	The Epithelial to Mesenchymal Transition Promotes Glutamine Independence by Suppressing GLS2 Expression. Cancers, 2019, 11, 1610.	1.7	31
25	Targeting the Interplay between Epithelial-to-Mesenchymal-Transition and the Immune System for Effective Immunotherapy. Cancers, 2019, 11, 714.	1.7	79
26	$GSK3\hat{l}^2$ regulates epithelial-mesenchymal transition and cancer stem cell properties in triple-negative breast cancer. Breast Cancer Research, 2019, 21, 37.	2.2	102
27	Abstract 3761: Regulation of metastasis by CD8 T lymphocytes. , 2019, , .		0
28	Abstract 4674: Targeting cancer stem-cells in aggressive variant prostate cancers. , 2019, , .		1
29	Abstract 2907: Exosome secretion is an inheritable property of cancer cells: Single-cell profiling of exosome secretion., 2019,,.		0
30	Abstract 4669: Overcoming therapy resistance in stem cell-rich triple negative breast cancer through p38 MAP kinase inhibition. , 2019, , .		1
31	The Non-Coding RNA Journal Club: Highlights on Recent Papers—6. Non-coding RNA, 2018, 4, 23.	1.3	0
32	A Pan-Cancer Analysis Reveals High-Frequency Genetic Alterations in Mediators of Signaling by the TGF-Î ² Superfamily. Cell Systems, 2018, 7, 422-437.e7.	2.9	134
33	Function of Tumor Suppressors in Resistance to Antiandrogen Therapy and Luminal Epithelial Plasticity of Aggressive Variant Neuroendocrine Prostate Cancers. Frontiers in Oncology, 2018, 8, 69.	1.3	9
34	EMT, stemness and tumor plasticity in aggressive variant neuroendocrine prostate cancers. Biochimica Et Biophysica Acta: Reviews on Cancer, 2018, 1870, 229-238.	3.3	45
35	Hybrid epithelial/mesenchymal phenotype(s): The  fittest' for metastasis?. Biochimica Et Biophysica Acta: Reviews on Cancer, 2018, 1870, 151-157.	3.3	122
36	Abstract A065: Modulating a cancer stem cell-specific signaling pathway to reverse the course of neuroendocrine prostate cancer. , 2018 , , .		0

#	Article	IF	CITATIONS
37	Targeting the Molecular Subtypes of Triple Negative Breast Cancer: Understanding the Diversity to Progress the Field. Oncologist, 2017, 22, 1086-1093.	1.9	77
38	N-BLR, a primate-specific non-coding transcript leads to colorectal cancer invasion and migration. Genome Biology, 2017, 18, 98.	3.8	97
39	Mutual regulation of tumour vessel normalization and immunostimulatory reprogramming. Nature, 2017, 544, 250-254.	13.7	555
40	Epithelial-Mesenchymal Transition (EMT) and Cancer Stem Cells (CSCs): The Traveling Metastasis. Cancer Drug Discovery and Development, 2017, , 67-80.	0.2	2
41	A vimentin binding small molecule leads to mitotic disruption in mesenchymal cancers. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E9903-E9912.	3.3	55
42	Metalâ€Free Dual Modal Contrast Agents Based on Fluorographene Quantum Dots. Particle and Particle Systems Characterization, 2017, 34, 1600221.	1.2	25
43	Distinguishing mechanisms underlying EMT tristability. Cancer Convergence, 2017, 1, 2.	8.0	69
44	The Non-Coding RNA Journal Club: Highlights on Recent Papers—5. Non-coding RNA, 2017, 3, 21.	1.3	2
45	Whole exome sequencing of metaplastic breast cancer (MpBC): Effect of mutation status on survival Journal of Clinical Oncology, 2017, 35, 1090-1090.	0.8	3
46	The H3K27me3-demethylase KDM6A is suppressed in breast cancer stem-like cells, and enables the resolution of bivalency during the mesenchymal-epithelial transition. Oncotarget, 2017, 8, 65548-65565.	0.8	49
47	Effective models for antimetastatic therapies. Oncotarget, 2017, 8, 93295-93296.	0.8	0
48	Abstract 3053: Stability and stemness of the hybrid epithelial-mesenchymal phenotype., 2017,,.		0
49	Stability of the hybrid epithelial/mesenchymal phenotype. Oncotarget, 2016, 7, 27067-27084.	0.8	367
50	The Non-Coding RNA Journal Club: Highlights on Recent Papers—4. Non-coding RNA, 2016, 2, 9.	1.3	1
51	The Z-cad dual fluorescent sensor detects dynamic changes between the epithelial and mesenchymal cellular states. BMC Biology, 2016, 14, 47.	1.7	34
52	3D Porous Graphene by Lowâ€Temperature Plasma Welding for Bone Implants. Advanced Materials, 2016, 28, 8959-8967.	11.1	52
53	Notch-Jagged signalling can give rise to clusters of cells exhibiting a hybrid epithelial/mesenchymal phenotype. Journal of the Royal Society Interface, 2016, 13, 20151106.	1.5	130
54	FOXC2 regulates the G2/M transition of stem cell-rich breast cancer cells and sensitizes them to PLK1 inhibition. Scientific Reports, 2016, 6, 23070.	1.6	24

#	Article	IF	Citations
55	High hardness in the biocompatible intermetallic compound \hat{l}^2 -Ti $<$ sub $>$ 3 $<$ /sub $>$ Au. Science Advances, 2016, 2, e1600319.	4.7	46
56	Mathematical modelling of phenotypic plasticity and conversion to a stem-cell state under hypoxia. Scientific Reports, 2016, 6, 18074.	1.6	39
57	Three-Dimensional Porous Sponges from Collagen Biowastes. ACS Applied Materials & Diterfaces, 2016, 8, 14836-14844.	4.0	29
58	Phosphorylation of serine 367 of FOXC2 by p38 regulates ZEB1 and breast cancer metastasis, without impacting primary tumor growth. Oncogene, 2016, 35, 5977-5988.	2.6	48
59	Inhibition of FOXC2 restores epithelial phenotype and drug sensitivity in prostate cancer cells with stem-cell properties. Oncogene, 2016, 35, 5963-5976.	2.6	78
60	Candidate Antimetastasis Drugs Suppress the Metastatic Capacity of Breast Cancer Cells by Reducing Membrane Fluidity. Cancer Research, 2016, 76, 2037-2049.	0.4	123
61	Whom to blame for metastasis, the epithelial–mesenchymal transition or the tumor microenvironment?. Cancer Letters, 2016, 380, 359-368.	3.2	54
62	Notch promotes tumor metastasis in a prostate-specific Pten-null mouse model. Journal of Clinical Investigation, 2016, 126, 2626-2641.	3.9	60
63	Rab25 acts as an oncogene in luminal B breast cancer and is causally associated with Snail driven EMT. Oncotarget, 2016, 7, 40252-40265.	0.8	35
64	Abstract A130: Immune regulation of EMT and metastatic competence in breast tumor progression. , 2016, , .		0
65	Abstract 5141: Determinants of metastatic competence in breast carcinoma: a role for immune cells., 2016,,.		0
66	Abstract 1598: LncRNA AK001796 as a therapeutic target in aggressive breast cancers. Cancer Research, 2016, 76, 1598-1598.	0.4	2
67	The Non-Coding RNA Journal Club: Highlights on Recent Papers. Non-coding RNA, 2015, 1, 87-93.	1.3	3
68	The Non-Coding RNA Journal Club: Highlights on Recent Papers—2. Non-coding RNA, 2015, 1, 167-169.	1.3	0
69	Tyrosine kinase inhibitors induce mesenchymal stem cell–mediated resistance in BCR-ABL+ acute lymphoblastic leukemia. Blood, 2015, 125, 2968-2973.	0.6	29
70	GD2 and GD3 synthase: novel drug targets for cancer therapy. Molecular and Cellular Oncology, 2015, 2, e975068.	0.3	6
71	A novel embryonic plasticity gene signature that predicts metastatic competence and clinical outcome. Scientific Reports, 2015, 5, 11766.	1.6	36
72	GD3 synthase regulates epithelial–mesenchymal transition and metastasis in breast cancer. Oncogene, 2015, 34, 2958-2967.	2.6	98

#	Article	IF	Citations
73	Inflammation Mediated Metastasis: Immune Induced Epithelial-To-Mesenchymal Transition in Inflammatory Breast Cancer Cells. PLoS ONE, 2015, 10, e0132710.	1.1	121
74	Coupling the modules of EMT and stemness: A tunable â€~stemness window' model. Oncotarget, 2015, 6, 25161-25174.	0.8	157
75	EMT-induced metabolite signature identifies poor clinical outcome. Oncotarget, 2015, 6, 42651-42660.	0.8	50
76	Abstract 4040: Transcription factor Snail mediates EMT by altering vesicular trafficking protein Rab25. , 2015, , .		0
77	Abstract 4065: Delineating the role of epithelial-mesenchymal transition in the generation and maintenance of prostate cancer stem cells. , 2015, , .		0
78	Abstract B2-49: Coupled cellular decision-making of EMT and stemness: A bottom-up regulatory model. , 2015, , .		0
79	Abstract B2-10: Systems biology reveals role of cholesterol homeostasis in breast cancer metastasis. , 2015, , .		0
80	Tumor Cell Heterogeneity in Small Cell Lung Cancer (SCLC): Phenotypical and Functional Differences Associated with Epithelial-Mesenchymal Transition (EMT) and DNA Methylation Changes. PLoS ONE, 2014, 9, e100249.	1.1	57
81	Genomic copy number imbalances associated with bone and non-bone metastasis of early-stage breast cancer. Breast Cancer Research and Treatment, 2014, 143, 189-201.	1.1	7
82	Towards elucidating the connection between epithelial–mesenchymal transitions and stemness. Journal of the Royal Society Interface, 2014, 11, 20140962.	1.5	156
83	Abstract 2080: Plasma membrane fluidity drives metastasis in breast cancer. Cancer Research, 2014, 74, 2080-2080.	0.4	2
84	Fluorinated Graphene Oxide; a New Multimodal Material for Biological Applications. Advanced Materials, 2013, 25, 5632-5637.	11.1	161
85	<i>CCAT2</i> , a novel noncoding RNA mapping to 8q24, underlies metastatic progression and chromosomal instability in colon cancer. Genome Research, 2013, 23, 1446-1461.	2.4	526
86	Sheep, wolf, or werewolf: Cancer stem cells and the epithelial-to-mesenchymal transition. Cancer Letters, 2013, 341, 16-23.	3.2	23
87	FOXC2 Expression Links Epithelial–Mesenchymal Transition and Stem Cell Properties in Breast Cancer. Cancer Research, 2013, 73, 1981-1992.	0.4	242
88	Circulating Breast Tumor Cells Exhibit Dynamic Changes in Epithelial and Mesenchymal Composition. Breast Diseases, 2013, 24, 225-226.	0.0	2
89	Endothelial Cells Promote the Colorectal Cancer Stem Cell Phenotype through a Soluble Form of Jagged-1. Cancer Cell, 2013, 23, 171-185.	7.7	390
90	Synthesis of Fluorinated Graphene Oxide and its Amphiphobic Properties. Particle and Particle Systems Characterization, 2013, 30, 266-272.	1.2	106

#	Article	IF	Citations
91	BSTA Promotes mTORC2-Mediated Phosphorylation of Akt1 to Suppress Expression of <i>FoxC2</i> and Stimulate Adipocyte Differentiation. Science Signaling, 2013, 6, ra2.	1.6	39
92	Epigenetic silencing of microRNA-203 is required for EMT and cancer stem cell properties. Scientific Reports, 2013, 3, 2687.	1.6	104
93	Architecture of epigenetic reprogramming following Twist1-mediated epithelial-mesenchymal transition. Genome Biology, 2013, 14, R144.	13.9	74
94	Investigating the Link between Molecular Subtypes of Glioblastoma, Epithelial-Mesenchymal Transition, and CD133 Cell Surface Protein. PLoS ONE, 2013, 8, e64169.	1.1	73
95	Abstract A039: The role of long noncoding RNAs in epithelial to mesenchymal transition and cancer stem cells. , 2013, , .		0
96	Epithelial–Mesenchymal Transition and Stem Cell Markers in Patients with HER2-Positive Metastatic Breast Cancer. Molecular Cancer Therapeutics, 2012, 11, 2526-2534.	1.9	194
97	Loss of breast epithelial marker hCLCA2 promotes epithelial-to-mesenchymal transition and indicates higher risk of metastasis. Oncogene, 2012, 31, 2237-2246.	2.6	61
98	Fluorescent Superparamagnetic Iron Oxide Core–Shell Nanoprobes for Multimodal Cellular Imaging. Materials Express, 2012, 2, 265-274.	0.2	7
99	Gene expression in extratumoral microenvironment predicts clinical outcome in breast cancer patients. Breast Cancer Research, 2012, 14, R51.	2.2	74
100	Slug and Sox9 Cooperatively Determine the Mammary Stem Cell State. Cell, 2012, 148, 1015-1028.	13.5	830
101	Hybrid 2D Nanomaterials as Dualâ€Mode Contrast Agents in Cellular Imaging. Advanced Materials, 2012, 24, 2992-2998.	11.1	66
102	Overexpression of Snail induces epithelial–mesenchymal transition and a cancer stem cell–like phenotype in human colorectal cancer cells. Cancer Medicine, 2012, 1, 5-16.	1.3	190
103	Alternative origins of stroma in normal organs and disease. Stem Cell Research, 2012, 8, 312-323.	0.3	57
104	Expression of epithelial–mesenchymal transitionâ€inducing transcription factors in primary breast cancer: The effect of neoadjuvant therapy. International Journal of Cancer, 2012, 130, 808-816.	2.3	148
105	Ganglioside GD2 identifies breast cancer stem cells and promotes tumorigenesis. Journal of Clinical Investigation, 2012, 122, 2066-2078.	3.9	232
106	Abstract LB-193: Ganglioside GD2 identifies cancer stem cells and inhibition of GD2 biosynthesis by targeting GD3 synthase exerts antitumor effects. , 2012, , .		0
107	HDAC3 at the Fulcrum of an Epithelial-Mesenchymal Balance. Molecular Cell, 2011, 43, 697-698.	4.5	4
108	Epithelial-mesenchymal transition and cancer stem cells: a dangerously dynamic duo in breast cancer progression. Breast Cancer Research, 2011, 13, 202.	2.2	280

7

#	Article	IF	CITATIONS
109	Epidermal growth factor downâ€regulates the expression of neutrophil gelatinaseâ€associated lipocalin (NGAL) through Eâ€cadherin in pancreatic cancer cells. Cancer, 2011, 117, 2408-2418.	2.0	25
110	plgR: Frenemy of Inflammation, EMT, and HCC Progression. Journal of the National Cancer Institute, 2011, 103, 1644-1645.	3.0	13
111	Abstract 5008: Epidermal growth factor downregulates expression of neutrophil gelatinase-associated lipocalin (NGAL) through E-cadherin in pancreatic cancer cells., 2011,,.		0
112	P1-03-04: In-Vitro Characterization of a Breast Cancer Microenvironment with Epithelial-to-Mesenchymal Transition (EMT) Characteristics, 2011,,.		0
113	Epithelial Mesenchymal Transition Traits in Human Breast Cancer Cell Lines Parallel the CD44hi/CD24lo/- Stem Cell Phenotype in Human Breast Cancer. Journal of Mammary Gland Biology and Neoplasia, 2010, 15, 235-252.	1.0	252
114	Epithelial-Mesenchymal Transition-Derived Cells Exhibit Multilineage Differentiation Potential Similar to Mesenchymal Stem Cells Â. Stem Cells, 2010, 28, 1435-1445.	1.4	232
115	Core epithelial-to-mesenchymal transition interactome gene-expression signature is associated with claudin-low and metaplastic breast cancer subtypes. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 15449-15454.	3.3	909
116	Molecular mechanisms of metastasis in breast cancerâ€"clinical applications. Nature Reviews Clinical Oncology, 2010, 7, 693-701.	12.5	208
117	Breast Cancer Metastasis: Challenges and Opportunities. Cancer Research, 2009, 69, 4951-4953.	0.4	202
118	The Epithelial-to-Mesenchymal Transition and Cancer Stem Cells: A Coalition Against Cancer Therapies. Journal of Mammary Gland Biology and Neoplasia, 2009, 14, 29-43.	1.0	325
119	The importance of the epithelial-mesenchymal transition in breast cancer. Current Breast Cancer Reports, 2009, 1, 229-237.	0.5	7
120	The Epithelial-Mesenchymal Transition Generates Cells with Properties of Stem Cells. Cell, 2008, 133, 704-715.	13.5	7,695
121	Cell type-specific DNA methylation patterns in the human breast. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 14076-14081.	3.3	210
122	Loss of E-Cadherin Promotes Metastasis via Multiple Downstream Transcriptional Pathways. Cancer Research, 2008, 68, 3645-3654.	0.4	1,298
123	Mesenchyme Forkhead 1 (FOXC2) plays a key role in metastasis and is associated with aggressive basal-like breast cancers. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 10069-10074.	3.3	517
124	Enrichment of a Population of Mammary Gland Cells that Form Mammospheres and Have <i>In vivo</i> Repopulating Activity. Cancer Research, 2007, 67, 8131-8138.	0.4	165
125	Exploring a New Twist on Tumor Metastasis: Figure 1 Cancer Research, 2006, 66, 4549-4552.	0.4	276
126	Twist, a Master Regulator of Morphogenesis, Plays an Essential Role in Tumor Metastasis. Cell, 2004, 117, 927-939.	13.5	3,405

#	ARTICLE	IF	CITATIONS
127	Phenobarbitone-Mediated Translocation of the Cytosolic Proteins Interacting with the 5′-Proximal Region of Rat Liver CYP2B1/B2 Gene into the Nucleus. Biochemical and Biophysical Research Communications, 2002, 292, 312-317.	1.0	4
128	Receptor-Mediated Gene Delivery Approach Demonstrates the Role of 5′-Proximal DNA Region in Conferring Phenobarbitone Responsiveness to CYP2B2 Gene in Rat Liver in Vivo. Biochemical and Biophysical Research Communications, 2000, 268, 734-739.	1.0	9
129	Evaluation of Splenomegaly in Portal Hypertension. Journal of Clinical Gastroenterology, 1996, 22, 28-30.	1.1	21
130	Ultrasonic evaluation of portosystemic collateral circulation in portal hypertension. Journal of the Association of Physicians of India, The, 1996, 44, 537-9.	0.0	0
131	A model for the transcriptional regulation of the CYP2B1/B2 gene in rat liver Proceedings of the National Academy of Sciences of the United States of America, 1995, 92, 9628-9632.	3.3	35