Frank M Raushel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5228369/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Structural and Catalytic Diversity within the Amidohydrolase Superfamilyâ€. Biochemistry, 2005, 44, 6383-6391.	2.5	363
2	Channeling of Substrates and Intermediates in Enzyme-Catalyzed Reactions. Annual Review of Biochemistry, 2001, 70, 149-180.	11.1	352
3	Structure of Carbamoyl Phosphate Synthetase:  A Journey of 96 à from Substrate to Product [,] . Biochemistry, 1997, 36, 6305-6316.	2.5	322
4	Three-Dimensional Structure of the Zinc-Containing Phosphotriesterase with the Bound Substrate Analog Diethyl 4-Methylbenzylphosphonate,. Biochemistry, 1996, 35, 6020-6025.	2.5	266
5	Mechanism for the Hydrolysis of Organophosphates by the Bacterial Phosphotriesterase. Biochemistry, 2004, 43, 5707-5715.	2.5	263
6	Inactivation of organophosphorus nerve agents by the phosphotriesterase from Pseudomonas diminuta. Archives of Biochemistry and Biophysics, 1990, 277, 155-159.	3.0	253
7	Structure-based activity prediction for an enzyme of unknown function. Nature, 2007, 448, 775-779.	27.8	249
8	Structure-activity relationships in the hydrolysis of substrates by the phosphotriesterase from Pseudomonas diminuta. Biochemistry, 1989, 28, 4650-4655.	2.5	221
9	High Resolution X-ray Structures of Different Metal-Substituted Forms of Phosphotriesterase fromPseudomonas diminutaâ€,‡. Biochemistry, 2001, 40, 2712-2722.	2.5	213
10	Three-dimensional structure of the binuclear metal center of phosphotriesterase. Biochemistry, 1995, 34, 7973-7978.	2.5	208
11	Three-Dimensional Structure of Phosphotriesterase: An Enzyme Capable of Detoxifying Organophosphate Nerve Agents. Biochemistry, 1994, 33, 15001-15007.	2.5	206
12	Bacterial detoxification of organophosphate nerve agents. Current Opinion in Microbiology, 2002, 5, 288-295.	5.1	199
13	Catalytic mechanisms for phosphotriesterases. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2013, 1834, 443-453.	2.3	190
14	Molecular Structure of Dihydroorotase:Â A Paradigm for Catalysis through the Use of a Binuclear Metal Centerâ€,‡. Biochemistry, 2001, 40, 6989-6997.	2.5	189
15	Mechanism and stereochemical course at phosphorus of the reaction catalyzed by a bacterial phosphotriesterase. Biochemistry, 1988, 27, 1591-1597.	2.5	186
16	Enzymes with Molecular Tunnels. Accounts of Chemical Research, 2003, 36, 539-548.	15.6	173
17	Limits of diffusion in the hydrolysis of substrates by the phosphotriesterase from Pseudomonas diminuta. Biochemistry, 1991, 30, 7438-7444.	2.5	169
18	The Enzyme Function Initiative. Biochemistry, 2011, 50, 9950-9962.	2.5	169

#	Article	IF	CITATIONS
19	Detoxification of organophosphate nerve agents by bacterial phosphotriesterase. Toxicology and Applied Pharmacology, 2005, 207, 459-470.	2.8	159
20	The Ferrous-dioxy Complex of Neuronal Nitric Oxide Synthase. Journal of Biological Chemistry, 1997, 272, 17349-17353.	3.4	136
21	Metalâ^'Substrate Interactions Facilitate the Catalytic Activity of the Bacterial Phosphotriesteraseâ€. Biochemistry, 1996, 35, 10904-10912.	2.5	134
22	Evolution of function in $(\hat{l}^2/\hat{l}_{\pm})$ 8-barrel enzymes. Current Opinion in Chemical Biology, 2003, 7, 252-264.	6.1	130
23	Enhanced Degradation of Chemical Warfare Agents through Molecular Engineering of the Phosphotriesterase Active Site. Journal of the American Chemical Society, 2003, 125, 8990-8991.	13.7	129
24	Structural Determinants of the Substrate and Stereochemical Specificity of Phosphotriesteraseâ€. Biochemistry, 2001, 40, 1325-1331.	2.5	126
25	Virtual Screening against Metalloenzymes for Inhibitors and Substratesâ€. Biochemistry, 2005, 44, 12316-12328.	2.5	125
26	Enhancement, Relaxation, and Reversal of the Stereoselectivity for Phosphotriesterase by Rational Evolution of Active Site Residuesâ€. Biochemistry, 2001, 40, 1332-1339.	2.5	119
27	Intermediates in the transformation of phosphonates to phosphate by bacteria. Nature, 2011, 480, 570-573.	27.8	112
28	Transition-state structures for enzymic and alkaline phosphotriester hydrolysis. Biochemistry, 1991, 30, 7444-7450.	2.5	109
29	Three-dimensional structure of bacterial luciferase from Vibrio harveyi at 2.4 .ANG. resolution. Biochemistry, 1995, 34, 6581-6586.	2.5	109
30	The Amidotransferase Family of Enzymes:Â Molecular Machines for the Production and Delivery of Ammoniaâ€. Biochemistry, 1999, 38, 7891-7899.	2.5	102
31	Enzymes for the Homeland Defense: Optimizing Phosphotriesterase for the Hydrolysis of Organophosphate Nerve Agents. Biochemistry, 2012, 51, 6463-6475.	2.5	102
32	Predicting Substrates by Docking High-Energy Intermediates to Enzyme Structures. Journal of the American Chemical Society, 2006, 128, 15882-15891.	13.7	101
33	Enzymatic Neutralization of the Chemical Warfare Agent VX: Evolution of Phosphotriesterase for Phosphorothiolate Hydrolysis. Journal of the American Chemical Society, 2013, 135, 10426-10432.	13.7	100
34	Stereoselective Hydrolysis of Organophosphate Nerve Agents by the Bacterial Phosphotriesterase. Biochemistry, 2010, 49, 7978-7987.	2.5	98
35	Catalytic detoxification. Nature, 2011, 469, 310-311.	27.8	96
36	Carbamoyl Phosphate Synthetase: Caught in the Act of Glutamine Hydrolysisâ€,‡. Biochemistry, 1998, 37, 8825-8831.	2.5	95

#	Article	IF	CITATIONS
37	The Binding of Substrate Analogs to Phosphotriesterase. Journal of Biological Chemistry, 2000, 275, 30556-30560.	3.4	92
38	Detoxification of organophosphate pesticides using an immobilized phosphotriesterase fromPseudomonas diminuta. Biotechnology and Bioengineering, 1991, 37, 103-109.	3.3	90
39	The catalytic mechanism for aerobic formation of methane by bacteria. Nature, 2013, 497, 132-136.	27.8	90
40	Bovine liver fructokinase: purification and kinetic properties. Biochemistry, 1977, 16, 2169-2175.	2.5	85
41	Functional Annotation and Three-Dimensional Structure of Dr0930 from <i>Deinococcus radiodurans</i> , a Close Relative of Phosphotriesterase in the Amidohydrolase Superfamily. Biochemistry, 2009, 48, 2237-2247.	2.5	82
42	Detoxification of organophosphate pesticides using a nylon based immobilized phosphotriesterase fromPseudomonas diminuta. Applied Biochemistry and Biotechnology, 1991, 31, 59-73.	2.9	81
43	Characterization of a Phosphodiesterase Capable of Hydrolyzing EA 2192, the Most Toxic Degradation Product of the Nerve Agent VX. Biochemistry, 2007, 46, 9032-9040.	2.5	81
44	Stereochemical Constraints on the Substrate Specificity of Phosphotriesterase. Biochemistry, 1999, 38, 1159-1165.	2.5	76
45	Substrate synergism and the kinetic mechanism of yeast hexokinase. Biochemistry, 1982, 21, 1295-1302.	2.5	74
46	Structural characterization of the divalent cation sites of bacterial phosphotriesterase by cadmium-113 NMR spectroscopy. Biochemistry, 1993, 32, 9148-9155.	2.5	74
47	A Clinical-Stage Cysteine Protease Inhibitor blocks SARS-CoV-2 Infection of Human and Monkey Cells. ACS Chemical Biology, 2021, 16, 642-650.	3.4	74
48	The structure of carbamoyl phosphate synthetase determined to 2.1â€Ã resolution. Acta Crystallographica Section D: Biological Crystallography, 1999, 55, 8-24.	2.5	73
49	Structure of bacterial luciferase. Current Opinion in Structural Biology, 1995, 5, 798-809.	5.7	68
50	The Small Subunit of Carbamoyl Phosphate Synthetase: Snapshots along the Reaction Pathwayâ€. Biochemistry, 1999, 38, 16158-16166.	2.5	68
51	Structure of Diethyl Phosphate Bound to the Binuclear Metal Center of Phosphotriesterase. Biochemistry, 2008, 47, 9497-9504.	2.5	67
52	Perturbations to the Active Site of Phosphotriesteraseâ€. Biochemistry, 1997, 36, 1982-1988.	2.5	66
53	Success of pyridostigmine, physostigmine, eptastigmine and phosphotriesterase treatments in acute sarin intoxication. Toxicology, 1999, 134, 169-178.	4.2	65
54	Carbamoyl Phosphate Synthetase:  Closure of the B-Domain as a Result of Nucleotide Binding [,] . Biochemistry, 1999, 38, 2347-2357.	2.5	65

#	Article	IF	CITATIONS
55	Standards for Reporting Enzyme Data: The STRENDA Consortium: What it aims to do and why it should be helpful. Perspectives in Science, 2014, 1, 131-137.	0.6	65
56	Mechanism of the Dihydroorotase Reactionâ€. Biochemistry, 2004, 43, 16285-16292.	2.5	64
57	The evolution of phosphotriesterase for decontamination and detoxification of organophosphorus chemical warfare agents. Chemico-Biological Interactions, 2019, 308, 80-88.	4.0	63
58	Resolution of Chiral Phosphate, Phosphonate, and Phosphinate Esters by an Enantioselective Enzyme Library. Journal of the American Chemical Society, 2006, 128, 15892-15902.	13.7	62
59	Kinetic mechanism of Escherichia coli carbamoyl-phosphate synthetase. Biochemistry, 1978, 17, 5587-5591.	2.5	61
60	Role of Conserved Residues within the Carboxy Phosphate Domain of Carbamoyl Phosphate Synthetaseâ€. Biochemistry, 1996, 35, 14352-14361.	2.5	61
61	Augmented Hydrolysis of Diisopropyl Fluorophosphate in Engineered Mutants of Phosphotriesterase. Journal of Biological Chemistry, 1997, 272, 25596-25601.	3.4	61
62	Tunneling of intermediates in enzyme-catalyzed reactions. Current Opinion in Chemical Biology, 2006, 10, 465-472.	6.1	60
63	Contribution of histidine residues to the conformational stability of ribonuclease T1 and mutant Glu-58 .fwdarw. Ala. Biochemistry, 1990, 29, 7572-7576.	2.5	59
64	Phosphotriesterase—A Promising Candidate for Use in Detoxification of Organophosphates. Fundamental and Applied Toxicology, 1994, 23, 578-584.	1.8	58
65	Stereoselective Detoxification of Chiral Sarin and Soman Analogues by Phosphotriesterase. Bioorganic and Medicinal Chemistry, 2001, 9, 2083-2091.	3.0	58
66	Identification of the Histidine Ligands to the Binuclear Metal Center of Phosphotriesterase by Site-Directed Mutagenesis. Biochemistry, 1994, 33, 4265-4272.	2.5	57
67	Evolution of Enzymatic Activities in the Enolase Superfamily:  N-Succinylamino Acid Racemase and a New Pathway for the Irreversible Conversion of d- to l-Amino Acids. Biochemistry, 2006, 45, 4455-4462.	2.5	56
68	Nanoscavenger provides long-term prophylactic protection against nerve agents in rodents. Science Translational Medicine, 2019, 11, .	12.4	56
69	Self-Assembly of the Binuclear Metal Center of Phosphotriesteraseâ€. Biochemistry, 2000, 39, 7357-7364.	2.5	55
70	Variants of Phosphotriesterase for the Enhanced Detoxification of the Chemical Warfare Agent VR. Biochemistry, 2015, 54, 5502-5512.	2.5	55
71	Investigation of ribonuclease T1 folding intermediates by hydrogen-deuterium amide exchange-two-dimensional NMR spectroscopy. Biochemistry, 1993, 32, 6152-6156.	2.5	54
72	Molecular Engineering of Organophosphate Hydrolysis Activity from a Weak Promiscuous Lactonase Template. Journal of the American Chemical Society, 2013, 135, 11670-11677.	13.7	53

#	Article	IF	CITATIONS
73	Role of the four conserved histidine residues in the amidotransferase domain of carbamoyl phosphate synthetase. Biochemistry, 1991, 30, 7901-7907.	2.5	52
74	The enzymatic conversion of phosphonates to phosphate by bacteria. Current Opinion in Chemical Biology, 2013, 17, 589-596.	6.1	51
75	Determination of rate-limiting steps of Escherichia coli carbamoyl-phosphate synthase. Rapid quench and isotope partitioning experiments. Biochemistry, 1979, 18, 3424-3429.	2.5	49
76	Hydrolysis of Phosphotriesters:Â Determination of Transition States in Parallel Reactions by Heavy-Atom Isotope Effects. Journal of the American Chemical Society, 2001, 123, 9246-9253.	13.7	49
77	Encapsulation of Phosphotriesterase within Murine Erythrocytes. Toxicology and Applied Pharmacology, 1994, 124, 296-301.	2.8	48
78	Hydrolysis of Phosphodiesters through Transformation of the Bacterial Phosphotriesterase. Journal of Biological Chemistry, 1998, 273, 17445-17450.	3.4	48
79	The Substrate and Anomeric Specificity of Fructokinase. Journal of Biological Chemistry, 1973, 248, 8174-8177.	3.4	48
80	Phosphorus-31 nuclear magnetic resonance application to positional isotope exchange reactions catalyzed by Escherichia coli carbamoyl-phosphate synthetase: analysis of forward and reverse enzymic reactions. Biochemistry, 1980, 19, 3170-3174.	2.5	47
81	High-Resolution X-Ray Structure of Isoaspartyl Dipeptidase fromEscherichia coliâ€,‡. Biochemistry, 2003, 42, 4874-4882.	2.5	47
82	Theoretical Investigation of the Reaction Mechanism of the Dinuclear Zinc Enzyme Dihydroorotase. Chemistry - A European Journal, 2008, 14, 4287-4292.	3.3	47
83	Analysis of the galactosyltransferase reaction by positional isotope exchange and secondary deuterium isotope effects. Archives of Biochemistry and Biophysics, 1988, 267, 54-59.	3.0	44
84	Phosphotriesterase: An Enzyme in Search of Its Natural Substrate. Advances in Enzymology and Related Areas of Molecular Biology, 2006, 74, 51-93.	1.3	44
85	Antiferromagnetic coupling in the binuclear metal cluster of manganese-substituted phosphotriesterase. Journal of the American Chemical Society, 1993, 115, 12173-12174.	13.7	42
86	Inhibitor binding to the Phe53Trp mutant of HIV-1 protease promotes conformational changes detectable by spectrofluorometry. Biochemistry, 1993, 32, 3557-3563.	2.5	42
87	Stereospcific enzymatic hydrolysis of phosphorus-sulfur bonds in chiral organophosphate triesters. Bioorganic and Medicinal Chemistry Letters, 1994, 4, 1473-1478.	2.2	42
88	Catalytic Mechanism and Three-Dimensional Structure of Adenine Deaminase [,] . Biochemistry, 2011, 50, 1917-1927.	2.5	42
89	A Molecular Wedge for Triggering the Amidotransferase Activity of Carbamoyl Phosphate Synthetase. Biochemistry, 1994, 33, 2945-2950.	2.5	41
90	Carbamoyl phosphate synthetase: a tunnel runs through it. Current Opinion in Structural Biology, 1998, 8, 679-685.	5.7	41

6

#	Article	IF	CITATIONS
91	Substrate Distortion and the Catalytic Reaction Mechanism of 5-Carboxyvanillate Decarboxylase. Journal of the American Chemical Society, 2016, 138, 826-836.	13.7	41
92	Stopped-flow kinetic analysis of the bacterial luciferase reaction. Biochemistry, 1992, 31, 3807-3813.	2.5	40
93	An Engineered Blockage within the Ammonia Tunnel of Carbamoyl Phosphate Synthetase Prevents the Use of Glutamine as a Substrate but Not Ammonia. Biochemistry, 2000, 39, 3240-3247.	2.5	39
94	Catalytic properties of the PepQ prolidase from Escherichia coli. Archives of Biochemistry and Biophysics, 2004, 429, 224-230.	3.0	39
95	Protonation of the Binuclear Metal Center within the Active Site of Phosphotriesteraseâ€. Biochemistry, 2005, 44, 11005-11013.	2.5	39
96	Annotating Enzymes of Unknown Function:  N-Formimino-l-glutamate Deiminase Is a Member of the Amidohydrolase Superfamily. Biochemistry, 2006, 45, 1997-2005.	2.5	39
97	Deuterium Kinetic Isotope Effects and the Mechanism of the Bacterial Luciferase Reactionâ€. Biochemistry, 1998, 37, 2596-2606.	2.5	38
98	Mechanism of the Reaction Catalyzed by Isoaspartyl Dipeptidase fromEscherichia coliâ€,‡. Biochemistry, 2005, 44, 7115-7124.	2.5	38
99	STRENDA DB: enabling the validation and sharing of enzyme kinetics data. FEBS Journal, 2018, 285, 2193-2204.	4.7	38
100	A multinuclear nuclear magnetic resonance study of the monovalent-divalent cation sites of pyruvate kinase. Biochemistry, 1980, 19, 5481-5485.	2.5	37
101	Proposed mechanism for the bacterial bioluminescence reaction involving a dioxirane intermediate. Biochemical and Biophysical Research Communications, 1989, 164, 1137-1142.	2.1	37
102	Regulatory Control of the Amidotransferase Domain of Carbamoyl Phosphate Synthetase. Biochemistry, 1998, 37, 16773-16779.	2.5	37
103	Enzymatic Resolution of Chiral Phosphinate Esters. Journal of the American Chemical Society, 2004, 126, 8888-8889.	13.7	37
104	A Combined Experimental-Theoretical Study of the LigW-Catalyzed Decarboxylation of 5-Carboxyvanillate in the Metabolic Pathway for Lignin Degradation. ACS Catalysis, 2017, 7, 4968-4974.	11.2	37
105	Comparison of the Functional Differences for the Homologous Residues within the Carboxy Phosphate and Carbamate Domains of Carbamoyl Phosphate Synthetaseâ€. Biochemistry, 1996, 35, 14362-14369.	2.5	35
106	Carbamoyl-phosphate Synthetase. Journal of Biological Chemistry, 2002, 277, 39722-39727.	3.4	35
107	Quantifying the allosteric properties of Escherichia coli carbamyl phosphate synthetase: determination of thermodynamic linked-function parameters in an ordered kinetic mechanism. Biochemistry, 1992, 31, 2309-2316.	2.5	34
108	The catalytic mechanism of galactose mutarotase. Protein Science, 2003, 12, 1051-1059.	7.6	34

#	Article	IF	CITATIONS
109	The Hunt for 8-Oxoguanine Deaminase. Journal of the American Chemical Society, 2010, 132, 1762-1763.	13.7	34
110	Paramagnetic probes for carbamoyl-phosphate synthetase: metal ion binding studies and preparation of nitroxide spin-labeled derivatives. Biochemistry, 1979, 18, 5562-5566.	2.5	33
111	Mechanism-Based Inactivation of Phosphotriesterase by Reaction of a Critical Histidine with a Ketene Intermediate. Biochemistry, 1995, 34, 743-749.	2.5	33
112	The Binding of Inosine Monophosphate to Escherichia coli Carbamoyl Phosphate Synthetase. Journal of Biological Chemistry, 1999, 274, 22502-22507.	3.4	33
113	Mechanism of Cobyrinic Acid a,c-Diamide Synthetase from Salmonella typhimurium LT2. Biochemistry, 2004, 43, 10619-10627.	2.5	33
114	On the Catalytic Mechanism of Human ATP Citrate Lyase. Biochemistry, 2012, 51, 5198-5211.	2.5	33
115	Calculation of retention indices for benzene and benzene derivatives on the basis of molecular structure. Journal of Chromatography A, 1972, 65, 556-559.	3.7	32
116	Channeling of Ammonia through the Intermolecular Tunnel Contained within Carbamoyl Phosphate Synthetase. Journal of the American Chemical Society, 1999, 121, 3803-3804.	13.7	32
117	Rationally Engineered Mutants of Phosphotriesterase for Preparative Scale Isolation of Chiral Organophosphates. Journal of the American Chemical Society, 2000, 122, 10206-10207.	13.7	32
118	Structure and Catalytic Mechanism of Ligl: Insight into the Amidohydrolase Enzymes of cog3618 and Lignin Degradation. Biochemistry, 2012, 51, 3497-3507.	2.5	32
119	Assignment of Pterin Deaminase Activity to an Enzyme of Unknown Function Guided by Homology Modeling and Docking. Journal of the American Chemical Society, 2013, 135, 795-803.	13.7	32
120	Interrogation of the Substrate Profile and Catalytic Properties of the Phosphotriesterase from <i>Sphingobium</i> sp. Strain TCM1: An Enzyme Capable of Hydrolyzing Organophosphate Flame Retardants and Plasticizers. Biochemistry, 2015, 54, 7539-7549.	2.5	32
121	Differential roles for three conserved histidine residues within the large subunit of carbamoyl phosphate synthetase. Biochemistry, 1993, 32, 232-240.	2.5	31
122	Are turns required for the folding of ribonuclease T1?. Protein Science, 1996, 5, 204-211.	7.6	31
123	Identification of a Phosphorylated Enzyme Intermediate in the Catalytic Mechanism for Selenophosphate Synthetase. Journal of the American Chemical Society, 1997, 119, 6684-6685.	13.7	31
124	Synchronization of the Three Reaction Centers within Carbamoyl Phosphate Synthetase. Biochemistry, 2000, 39, 5051-5056.	2.5	31
125	Stereochemical Specificity of Organophosphorus Acid Anhydrolase toward p-Nitrophenyl Analogs of Soman and Sarin. Bioorganic Chemistry, 2001, 29, 27-35.	4.1	31
126	N-Acetyl-d-glucosamine-6-phosphate Deacetylase:  Substrate Activation via a Single Divalent Metal Ion. Biochemistry, 2007, 46, 7942-7952.	2.5	31

#	Article	IF	CITATIONS
127	Structural and Mechanistic Characterization of <scp>l</scp> -Histidinol Phosphate Phosphatase from the Polymerase and Histidinol Phosphatase Family of Proteins. Biochemistry, 2013, 52, 1101-1112.	2.5	31
128	Overcoming the Challenges of Enzyme Evolution To Adapt Phosphotriesterase for V-Agent Decontamination. Biochemistry, 2019, 58, 2039-2053.	2.5	31
129	Regulatory Changes in the Control of Carbamoyl Phosphate Synthetase Induced by Truncation and Mutagenesis of the Allosteric Binding Domain. Biochemistry, 1995, 34, 13920-13927.	2.5	30
130	Allosteric Effects of Carbamoyl Phosphate Synthetase fromEscherichia coliAre Entropy-Drivenâ€. Biochemistry, 1996, 35, 11918-11924.	2.5	30
131	A Combined Theoretical and Experimental Study of the Ammonia Tunnel in Carbamoyl Phosphate Synthetase. Journal of the American Chemical Society, 2009, 131, 10211-10219.	13.7	30
132	Three-Dimensional Structure and Catalytic Mechanism of Cytosine Deaminase. Biochemistry, 2011, 50, 5077-5085.	2.5	30
133	Mechanism and Structure of \hat{I}^3 -Resorcylate Decarboxylase. Biochemistry, 2018, 57, 3167-3175.	2.5	30
134	CO2 Is Required for the Assembly of the Binuclear Metal Center of Phosphotriesterase. Journal of the American Chemical Society, 1995, 117, 7580-7581.	13.7	29
135	Stereospecificity in the enzymatic hydrolysis of cyclosarin (GF). Enzyme and Microbial Technology, 2005, 37, 547-555.	3.2	29
136	Chemical Mechanism of the Phosphotriesterase from <i>Sphingobium</i> sp. Strain TCM1, an Enzyme Capable of Hydrolyzing Organophosphate Flame Retardants. Journal of the American Chemical Society, 2016, 138, 2921-2924.	13.7	29
137	Textile-based wearable solid-contact flexible fluoride sensor: Toward biodetection of G-type nerve agents. Biosensors and Bioelectronics, 2021, 182, 113172.	10.1	29
138	Mechanism-based inactivation of a bacterial phosphotriesterase by an alkynyl phosphate ester. Journal of the American Chemical Society, 1991, 113, 8560-8561.	13.7	28
139	Transposition of Protein Sequences: Circular Permutation of Ribonuclease T1. Journal of the American Chemical Society, 1994, 116, 5529-5533.	13.7	28
140	Conformational stability of ribonuclease T1 determined by hydrogenâ€deuterium exchange. Protein Science, 1997, 6, 1387-1395.	7.6	28
141	Structural and Kinetic Studies of Sugar Binding to Galactose Mutarotase from Lactococcus lactis. Journal of Biological Chemistry, 2002, 277, 45458-45465.	3.4	28
142	Determination of the rate-limiting steps and chemical mechanism of fructokinase by isotope exchange, isotope partitioning, and pH studies. Biochemistry, 1977, 16, 2176-2181.	2.5	27
143	Methyl chymotrypsin catalyzed hydrolyses of specific substrate esters indicate multiple proton catalysis is possible with a modified charge relay triad. Journal of the American Chemical Society, 1988, 110, 8246-8247.	13.7	27
144	A versatile mechanism based reaction probe for the direct selection of biocatalysts. Bioorganic and Medicinal Chemistry Letters, 1996, 6, 2117-2120.	2.2	27

#	Article	IF	CITATIONS
145	Carbamoyl phosphate synthetase: a crooked path from substrates to products. Current Opinion in Chemical Biology, 1998, 2, 624-632.	6.1	26
146	Substrate and stereochemical specificity of the organophosphorus acid anhydrolase from Alteromonas sp. JD6.5 toward p -nitrophenyl phosphotriesters. Bioorganic and Medicinal Chemistry Letters, 2000, 10, 1285-1288.	2.2	26
147	Uronate Isomerase:  A Nonhydrolytic Member of the Amidohydrolase Superfamily with an Ambivalent Requirement for a Divalent Metal Ion. Biochemistry, 2006, 45, 7453-7462.	2.5	26
148	Activation of the Binuclear Metal Center through Formation of Phosphotriesteraseâ~'Inhibitor Complexesâ€. Biochemistry, 2007, 46, 3435-3442.	2.5	26
149	Reaction Mechanism of Zinc-Dependent Cytosine Deaminase from <i>Escherichia coli</i> : A Quantum-Chemical Study. Journal of Physical Chemistry B, 2014, 118, 5644-5652.	2.6	26
150	Deconstruction of the Catalytic Array within the Amidotransferase Subunit of Carbamoyl Phosphate Synthetaseâ€. Biochemistry, 1999, 38, 15909-15914.	2.5	25
151	Kinetic Evidence Supports the Existence of Two Halide Binding Sites that Have a Distinct Impact on the Heme Iron Microenvironment in Myeloperoxidaseâ€. Biochemistry, 2007, 46, 398-405.	2.5	25
152	At the Periphery of the Amidohydrolase Superfamily:  Bh0493 from <i>Bacillus halodurans</i> Catalyzes the Isomerization of <scp>d</scp> -Galacturonate to <scp>d</scp> -Tagaturonate [,] . Biochemistry, 2008, 47, 1194-1206.	2.5	25
153	Target selection and annotation for the structural genomics of the amidohydrolase and enolase superfamilies. Journal of Structural and Functional Genomics, 2009, 10, 107-125.	1.2	25
154	Structural Determinants for the Stereoselective Hydrolysis of Chiral Substrates by Phosphotriesterase. Biochemistry, 2010, 49, 7988-7997.	2.5	25
155	Intrinsic GTPase Activity of K-RAS Monitored by Native Mass Spectrometry. Biochemistry, 2019, 58, 3396-3405.	2.5	25
156	Allosteric Control of the Oligomerization of Carbamoyl Phosphate Synthetase from <i>Escherichia coli</i> . Biochemistry, 2001, 40, 11030-11036.	2.5	24
157	Operational Control of Stereoselectivity during the Enzymatic Hydrolysis of Racemic Organophosphorus Compounds. Journal of the American Chemical Society, 2003, 125, 7526-7527.	13.7	24
158	Differentiation of chiral phosphorus enantiomers by 31P and 1H NMR spectroscopy using amino acid derivatives as chemical solvating agents. Tetrahedron: Asymmetry, 2007, 18, 1391-1397.	1.8	24
159	Computational Design of Enzymes. Chemistry and Biology, 2008, 15, 421-423.	6.0	24
160	Enzymatic Deamination of the Epigenetic Base <i>N</i> -6-Methyladenine. Journal of the American Chemical Society, 2011, 133, 2080-2083.	13.7	24
161	Discovery of a Glutamine Kinase Required for the Biosynthesis of the <i>O</i> -Methyl Phosphoramidate Modifications Found in the Capsular Polysaccharides of <i>Campylobacter jejuni</i> . Journal of the American Chemical Society, 2017, 139, 9463-9466.	13.7	24
162	Restricted Passage of Reaction Intermediates through the Ammonia Tunnel of Carbamoyl Phosphate Synthetase. Journal of Biological Chemistry, 2000, 275, 26233-26240.	3.4	24

#	Article	IF	CITATIONS
163	Distances between structural metal ion, substrates, and allosteric modifier of fructose bisphosphatase. Biochemistry, 1981, 20, 359-362.	2.5	23
164	Expression ofPseudomonas phosphotriesterase activity in the fall armyworm confers resistance to insecticides. Experientia, 1990, 46, 729-731.	1.2	23
165	Mechanism-Based Inhibitors for the Inactivation of the Bacterial Phosphotriesteraseâ€. Biochemistry, 1997, 36, 9022-9028.	2.5	23
166	Organophosphate Nerve Agent Toxicity in Hydra attenuata. Chemical Research in Toxicology, 2003, 16, 953-957.	3.3	23
167	Perforation of the Tunnel Wall in Carbamoyl Phosphate Synthetase Derails the Passage of Ammonia between Sequential Active Sitesâ€. Biochemistry, 2004, 43, 5334-5340.	2.5	23
168	Structural Diversity within the Mononuclear and Binuclear Active Sites of N-Acetyl-d-glucosamine-6-phosphate Deacetylase,. Biochemistry, 2007, 46, 7953-7962.	2.5	23
169	Discovery of a Kojibiose Phosphorylase in <i>Escherichia coli</i> K-12. Biochemistry, 2018, 57, 2857-2867.	2.5	23
170	d -Ala– d -X ligases: evaluation of d -alanyl phosphate intermediate by MIX, PIX and rapid quench studies. Chemistry and Biology, 2000, 7, 505-514.	6.0	22
171	Inactivation of the Amidotransferase Activity of Carbamoyl Phosphate Synthetase by the Antibiotic Acivicin. Journal of Biological Chemistry, 2002, 277, 4368-4373.	3.4	22
172	Enzymatic Synthesis of Chiral Organophosphothioates from Prochiral Precursors. Journal of the American Chemical Society, 2002, 124, 3498-3499.	13.7	22
173	Tight Binding Inhibitors ofN-Acyl Amino Sugar andN-Acyl Amino Acid Deacetylases. Journal of the American Chemical Society, 2006, 128, 4244-4245.	13.7	22
174	Biophysical Applications of NMR to Phosphoryl Transfer Enzymes and Metal Nuclei of Metalloproteins. Annual Review of Biophysics and Bioengineering, 1980, 9, 363-392.	5.3	21
175	Kinetic mechanism of argininosuccinate synthetase. Archives of Biochemistry and Biophysics, 1983, 225, 979-985.	3.0	21
176	Positional Isotope Exchang. Critical Reviews in Biochemistry, 1988, 23, 1-26.	7.5	21
177	Histidine-254 Is Essential for the Inactivation of Phosphotriesterase with the Alkynyl Phosphate Esters and Diethyl Pyrocarbonate. Biochemistry, 1995, 34, 750-754.	2.5	21
178	Eptastigmine–Phosphotriesterase Combination in DFP Intoxication. Toxicology and Applied Pharmacology, 1996, 140, 364-369.	2.8	21
179	Interaction of Bacterial Luciferase with 8-Substituted Flavin Mononucleotide Derivatives. Journal of Biological Chemistry, 1996, 271, 104-110.	3.4	21
180	Kinetic Mechanism of Kanamycin Nucleotidyltransferase from Staphylococcus aureus. Bioorganic Chemistry, 1999, 27, 395-408.	4.1	21

#	Article	IF	CITATIONS
181	Allosteric Dominance in Carbamoyl Phosphate Synthetase. Biochemistry, 1999, 38, 1394-1401.	2.5	21
182	Stereochemistry of binding of thiophosphate analogs of ATP and ADP to carbamate kinase, glutamine synthetase, and carbamoyl-phosphate synthetase. Archives of Biochemistry and Biophysics, 1980, 199, 7-15.	3.0	20
183	A direct NMR method for the determination of correlation times in enzyme complexes involving monovalent cations and paramagnetic centers. Journal of the American Chemical Society, 1980, 102, 6618-6619.	13.7	20
184	Protection of Organophosphate-Inactivated Esterases with Phosphotriesterase. Fundamental and Applied Toxicology, 1996, 31, 210-217.	1.8	20
185	Discovery of a Cyclic Phosphodiesterase That Catalyzes the Sequential Hydrolysis of Both Ester Bonds to Phosphorus. Journal of the American Chemical Society, 2013, 135, 16360-16363.	13.7	20
186	Substrate Deconstruction and the Nonadditivity of Enzyme Recognition. Journal of the American Chemical Society, 2014, 136, 7374-7382.	13.7	20
187	Biosynthesis of GDP- <scp>d</scp> - <i>glycero</i> -α- <scp>d</scp> - <i>manno</i> -heptose for the Capsular Polysaccharide of <i>Campylobacter jejuni</i> . Biochemistry, 2019, 58, 3893-3902.	2.5	20
188	A positional isotope exchange study of the argininosuccinate lyase reaction. Biochemistry, 1984, 23, 1791-1795.	2.5	19
189	Phosphotriesterase Decreases Paraoxon Toxicity in Mice. Toxicology and Applied Pharmacology, 1993, 121, 275-278.	2.8	19
190	Capillary electrophoretic separation of the enantiomers of organophosphates with a phosphorus stereogenic center using the sodium salt of octakis(2,3-diacetyl-6-sulfo)-Î ³ -cyclodextrin as resolving agent. Journal of Chromatography A, 2000, 895, 247-254.	3.7	19
191	Long-range allosteric transitions in carbamoyl phosphate synthetase. Protein Science, 2004, 13, 2398-2405.	7.6	19
192	Access to the carbamate tunnel of carbamoyl phosphate synthetase. Archives of Biochemistry and Biophysics, 2004, 425, 33-41.	3.0	19
193	Phospholipid-Based Catalytic Nanocapsules. Advanced Functional Materials, 2005, 15, 267-272.	14.9	19
194	Functional Annotation of Two New Carboxypeptidases from the Amidohydrolase Superfamily of Enzymes. Biochemistry, 2009, 48, 4567-4576.	2.5	19
195	Discovery of an <scp>l</scp> -Fucono-1,5-lactonase from cog3618 of the Amidohydrolase Superfamily. Biochemistry, 2013, 52, 239-253.	2.5	19
196	<scp>l</scp> -Galactose Metabolism in <i>Bacteroides vulgatus</i> from the Human Gut Microbiota. Biochemistry, 2014, 53, 4661-4670.	2.5	19
197	An OPAA enzyme mutant with increased catalytic efficiency on the nerve agents sarin, soman, and GP. Enzyme and Microbial Technology, 2018, 112, 65-71.	3.2	19
198	An empirical analysis of enzyme function reporting for experimental reproducibility: Missing/incomplete information in published papers. Biophysical Chemistry, 2018, 242, 22-27.	2.8	19

#	Article	IF	CITATIONS
199	Functional Identification of Incorrectly Annotated Prolidases from the Amidohydrolase Superfamily of Enzymes. Biochemistry, 2009, 48, 3730-3742.	2.5	18
200	Discovery and Structure Determination of the Orphan Enzyme Isoxanthopterin Deaminase,. Biochemistry, 2010, 49, 4374-4382.	2.5	18
201	Functional Identification and Structure Determination of Two Novel Prolidases from cog1228 in the Amidohydrolase Superfamily,. Biochemistry, 2010, 49, 6791-6803.	2.5	18
202	Pa0148 fromPseudomonas aeruginosaCatalyzes the Deamination of Adenine. Biochemistry, 2011, 50, 6589-6597.	2.5	18
203	Structure of a Novel Phosphotriesterase from <i>Sphingobium</i> sp. TCM1: A Familiar Binuclear Metal Center Embedded in a Seven-Bladed β-Propeller Protein Fold. Biochemistry, 2016, 55, 3963-3974.	2.5	18
204	Cytidine Diphosphoramidate Kinase: An Enzyme Required for the Biosynthesis of the <i>O</i> -Methyl Phosphoramidate Modification in the Capsular Polysaccharides of <i>Campylobacter jejuni</i> . Biochemistry, 2018, 57, 2238-2244.	2.5	18
205	Kinetic mechanism of bovine liver argininosuccinate lyase. Archives of Biochemistry and Biophysics, 1983, 221, 143-147.	3.0	17
206	Nitro analogs of substrates for argininosuccinate synthetase and argininosuccinate lyase. Archives of Biochemistry and Biophysics, 1984, 232, 520-525.	3.0	17
207	Isotopic probes of the argininosuccinate lyase reaction. Biochemistry, 1986, 25, 4744-4749.	2.5	17
208	Primary and secondary oxygen-18 isotope effects in the alkaline and enzyme-catalyzed hydrolysis of phosphotriesters. Journal of the American Chemical Society, 1991, 113, 730-732.	13.7	17
209	Utilization of Copper as a Paramagnetic Probe for the Binuclear Metal Center of Phosphotriesterase. Archives of Biochemistry and Biophysics, 1995, 316, 765-772.	3.0	17
210	A Stringent Test for the Nucleotide Switch Mechanism of Carbamoyl Phosphate Synthetase. Biochemistry, 1998, 37, 10272-10278.	2.5	17
211	Kinetic mechanism of asparagine synthetase from Vibrio cholerae. Bioorganic Chemistry, 2004, 32, 63-75.	4.1	17
212	Sensitivity and Specificity Improvement of an Ion Sensitive Field Effect Transistors-Based Biosensor for Potato Glycoalkaloids Detection. Journal of Agricultural and Food Chemistry, 2006, 54, 707-712.	5.2	17
213	Mechanism for the Transport of Ammonia within Carbamoyl Phosphate Synthetase Determined by Molecular Dynamics Simulations. Biochemistry, 2008, 47, 2935-2944.	2.5	17
214	Measurement of positional isotope exchange rates in enzyme-catalyzed reactions by fast atom bombardment mass spectrometry: application to argininosuccinate synthetase. Biochemistry, 1985, 24, 5888-5893.	2.5	16
215	Experimental verification of a predicted, previously unseen separation selectivity pattern in the capillary electrophoretic separation of noncharged enantiomers by octakis(2,3-diacetyl-6-sulfato)-γ-cyclodextrin. Electrophoresis, 2000, 21, 3249-3256.	2.4	16
216	Structure-Based Function Discovery of an Enzyme for the Hydrolysis of Phosphorylated Sugar Lactones. Biochemistry, 2012, 51, 1762-1773.	2.5	16

#	Article	IF	CITATIONS
217	Structure-Guided Discovery of New Deaminase Enzymes. Journal of the American Chemical Society, 2013, 135, 13927-13933.	13.7	16
218	Functional Annotation of LigU as a 1,3-Allylic Isomerase during the Degradation of Lignin in the Protocatechuate 4,5-Cleavage Pathway from the Soil Bacterium <i>Sphingobium</i> sp. SYK-6. Biochemistry, 2018, 57, 2837-2845.	2.5	16
219	Enzyme-Catalyzed Kinetic Resolution of Chiral Precursors to Antiviral Prodrugs. Biochemistry, 2019, 58, 3204-3211.	2.5	16
220	A combinatorial library for the binuclear metal center of bacterial phosphotriesterase. , 1997, 29, 553-561.		15
221	A Novel Multistep Mechanism for Oxygen Binding to Ferrous Hemoproteins:Â Rapid Kinetic Analysis of Ferrous-Dioxy Myeloperoxidase (Compound III) Formationâ€. Biochemistry, 2004, 43, 11589-11595.	2.5	15
222	Inhibitors designed for the active site of dihydroorotase. Bioorganic Chemistry, 2005, 33, 470-483.	4.1	15
223	Positional Isotope Exchange Analysis of the <i>Mycobacterium smegmatis</i> Cysteine Ligase (MshC). Biochemistry, 2008, 47, 4843-4850.	2.5	15
224	Annotating Enzymes of Uncertain Function: The Deacylation of <scp>d</scp> -Amino Acids by Members of the Amidohydrolase Superfamily [,] . Biochemistry, 2009, 48, 6469-6481.	2.5	15
225	Structure, Mechanism, and Substrate Profile for Sco3058: The Closest Bacterial Homologue to Human Renal Dipeptidase,. Biochemistry, 2010, 49, 611-622.	2.5	15
226	Discovery of a Cytokinin Deaminase. ACS Chemical Biology, 2011, 6, 1036-1040.	3.4	15
227	Prospecting for Unannotated Enzymes: Discovery of a 3′,5′-Nucleotide Bisphosphate Phosphatase within the Amidohydrolase Superfamily. Biochemistry, 2014, 53, 591-600.	2.5	15
228	Structures of the Carbon-Phosphorus Lyase Complex Reveal the Binding Mode of the NBD-like PhnK. Structure, 2016, 24, 37-42.	3.3	15
229	Biosynthesis of Nucleoside Diphosphoramidates in <i>Campylobacter jejuni</i> . Biochemistry, 2017, 56, 6079-6082.	2.5	15
230	Structural Analysis of Cj1427, an Essential NAD-Dependent Dehydrogenase for the Biosynthesis of the Heptose Residues in the Capsular Polysaccharides of <i>Campylobacter jejuni</i> . Biochemistry, 2020, 59, 1314-1327.	2.5	15
231	Determination of the mechanism of the argininosuccinate synthetase reaction by static and dynamic quench experiments. Biochemistry, 1985, 24, 5894-5898.	2.5	14
232	Pre-steady-state kinetics reveal a slow isomerization of the enzyme-NAD complex in the NAD-malic enzyme reaction. Biochemistry, 1993, 32, 1928-1934.	2.5	14
233	A Functional Analysis of the Allosteric Nucleotide Monophosphate Binding Site of Carbamoyl Phosphate Synthetase. Archives of Biochemistry and Biophysics, 2002, 400, 34-42.	3.0	14
234	The Multiple Amidation Reactions Catalyzed by Cobyric Acid Synthetase fromSalmonellatyphimuriumAre Sequential and Dissociative. Journal of the American Chemical Society, 2007, 129, 294-295.	13.7	14

#	Article	IF	CITATIONS
235	The catalase activity of diiron adenine deaminase. Protein Science, 2011, 20, 2080-2094.	7.6	14
236	A Chemoenzymatic Synthesis of the (<i>R</i> _P)-Isomer of the Antiviral Prodrug Remdesivir. Biochemistry, 2020, 59, 3038-3043.	2.5	14
237	Positional Isotope Exchange Analysis of the Pantothenate Synthetase Reactionâ€. Biochemistry, 2003, 42, 5108-5113.	2.5	13
238	The Mechanism of the Reaction Catalyzed by Uronate Isomerase Illustrates How an Isomerase May Have Evolved from a Hydrolase within the Amidohydrolase Superfamily. Biochemistry, 2009, 48, 8879-8890.	2.5	13
239	Carbamate Transport in Carbamoyl Phosphate Synthetase: A Theoretical and Experimental Investigation. Journal of the American Chemical Society, 2010, 132, 3870-3878.	13.7	13
240	Discovery of a cAMP Deaminase That Quenches Cyclic AMP-Dependent Regulation. ACS Chemical Biology, 2013, 8, 2622-2629.	3.4	13
241	Discovery of a Previously Unrecognized Ribonuclease from <i>Escherichia coli</i> That Hydrolyzes 5′-Phosphorylated Fragments of RNA. Biochemistry, 2015, 54, 2911-2918.	2.5	13
242	Biosynthesis of <scp>d</scp> - <i>glycero</i> - <scp>l</scp> - <i>gluco</i> -Heptose in the Capsular Polysaccharides of <i>Campylobacter jejuni</i> . Biochemistry, 2021, 60, 1552-1563.	2.5	13
243	Differentiation of isotopically labeled nucleotides using fast atom bombardment tandem mass spectrometry. Analytical Chemistry, 1987, 59, 980-984.	6.5	12
244	Deamination of 6-Aminodeoxyfutalosine in Menaquinone Biosynthesis by Distantly Related Enzymes. Biochemistry, 2013, 52, 6525-6536.	2.5	12
245	Substrate Specificity and Chemical Mechanism for the Reaction Catalyzed by Glutamine Kinase. Biochemistry, 2018, 57, 5447-5455.	2.5	12
246	Structural and Functional Characterization of YdjI, an Aldolase of Unknown Specificity in <i>Escherichia coli</i> K12. Biochemistry, 2019, 58, 3340-3353.	2.5	12
247	Transition State Analysis of the Reaction Catalyzed by the Phosphotriesterase from <i>Sphingobium</i> sp. TCM1. Biochemistry, 2019, 58, 1246-1259.	2.5	12
248	Functional Characterization of Cj1427, a Unique Ping-Pong Dehydrogenase Responsible for the Oxidation of GDP- <scp>d</scp> - <i>glycero-</i> î±- <scp>d</scp> - <i>manno</i> heptose in <i>Campylobacter jejuni</i> . Biochemistry, 2020, 59, 1328-1337.	2.5	12
249	Phosphotriesterase, Pralidoxime-2-Chloride (2-PAM) and Eptastigmine Treatments and Their Combinations in DFP Intoxication. Toxicology and Applied Pharmacology, 1996, 141, 555-560.	2.8	11
250	Potent Inhibition of the C–P Lyase Nucleosidase PhnI by Immucillin-A Triphosphate. Biochemistry, 2013, 52, 7366-7368.	2.5	11
251	Discovery of a Bacterial 5-Methylcytosine Deaminase. Biochemistry, 2014, 53, 7426-7435.	2.5	11
252	PhnJ – A novel radical SAM enzyme from the C–P lyase complex. Perspectives in Science, 2015, 4, 32-37.	0.6	11

#	Article	IF	CITATIONS
253	Structure and Reaction Mechanism of the LigJ Hydratase: An Enzyme Critical for the Bacterial Degradation of Lignin in the Protocatechuate 4,5-Cleavage Pathway. Biochemistry, 2018, 57, 5841-5850.	2.5	11
254	Influence of Primary Sequence Transpositions on the Folding Pathways of Ribonuclease T1. Biochemistry, 1996, 35, 10223-10233.	2.5	11
255	Nuclear magnetic resonance study of the topography of binding sites of Escherichia coli carbamoyl-phosphate synthetase. Biochemistry, 1983, 22, 1872-1876.	2.5	10
256	Determination of the energetics of the UDP-glucose pyrophosphorylase reaction by positional isotope exchange inhibition. Biochemistry, 1987, 26, 6465-6471.	2.5	10
257	Carbamoyl Phosphate Synthetase fromEscherichia coliDoes Not Catalyze the Dehydration of Bicarbonate to Carbon Dioxide. Bioorganic Chemistry, 1998, 26, 255-268.	4.1	10
258	Stereochemical preferences for chiral substrates by the bacterial phosphotriesterase. Chemico-Biological Interactions, 1999, 119-120, 225-234.	4.0	10
259	Structural Defects within the Carbamate Tunnel of Carbamoyl Phosphate Synthetaseâ€. Biochemistry, 2002, 41, 12575-12581.	2.5	10
260	A Common Catalytic Mechanism for Proteins of the Hutl Family. Biochemistry, 2008, 47, 5608-5615.	2.5	10
261	Rescue of the Orphan Enzyme Isoguanine Deaminase. Biochemistry, 2011, 50, 5555-5557.	2.5	10
262	Functional Annotation and Structural Characterization of a Novel Lactonase Hydrolyzing <scp>d</scp> -Xylono-1,4-lactone-5-phosphate and <scp>l</scp> -Arabino-1,4-lactone-5-phosphate. Biochemistry, 2014, 53, 4727-4738.	2.5	10
263	Enzymatic synthesis of uridine-5′-O-(2-thiodiphosphoglucose) and related sugar phosphorothioates. Bioorganic Chemistry, 1988, 16, 206-214.	4.1	9
264	Dissection of the Conduit for Allosteric Control of Carbamoyl Phosphate Synthetase by Ornithine. Archives of Biochemistry and Biophysics, 2002, 400, 26-33.	3.0	9
265	Functional significance of Clu-77 and Tyr-137 within the active site of isoaspartyl dipeptidase. Bioorganic Chemistry, 2005, 33, 448-458.	4.1	9
266	Mechanistic Characterization of N-Formimino-l-glutamate Iminohydrolase from Pseudomonas aeruginosa. Biochemistry, 2006, 45, 14256-14262.	2.5	9
267	Multiple Reaction Products from the Hydrolysis of Chiral and Prochiral Organophosphate Substrates by the Phosphotriesterase from <i>Sphingobium</i> sp. TCM1. Biochemistry, 2018, 57, 1842-1846.	2.5	9
268	Substrate-induced inactivation of argininosuccinate lyase by monofluorofumarate and difluorofumarate. Biochemistry, 1983, 22, 3729-3735.	2.5	8
269	Inhibitors Directed Towards the Binuclear Metal Center of Phosphotriesterase. Journal of Enzyme Inhibition and Medicinal Chemistry, 1997, 12, 191-203.	0.5	8
270	Partial Randomization of the Four Sequential Amidation Reactions Catalyzed by Cobyric Acid Synthetase with a Single Point Mutation. Biochemistry, 2007, 46, 13983-13993.	2.5	8

#	Article	IF	CITATIONS
271	Functional Annotation and Three-Dimensional Structure of an Incorrectly Annotated Dihydroorotase from cog3964 in the Amidohydrolase Superfamily. Biochemistry, 2013, 52, 228-238.	2.5	8
272	Subunit Interactions within the Carbon–Phosphorus Lyase Complex from <i>Escherichia coli</i> . Biochemistry, 2015, 54, 3400-3411.	2.5	8
273	Functional Characterization of YdjH, a Sugar Kinase of Unknown Specificity in <i>Escherichia coli</i> K12. Biochemistry, 2019, 58, 3354-3364.	2.5	8
274	Stereoselective Formation of Multiple Reaction Products by the Phosphotriesterase from Sphingobium sp. TCM1. Biochemistry, 2020, 59, 1273-1288.	2.5	8
275	Functional Characterization of Two PLP-Dependent Enzymes Involved in Capsular Polysaccharide Biosynthesis from <i>Campylobacter jejuni</i> . Biochemistry, 2021, 60, 2836-2843.	2.5	8
276	Mapping the structural domains of E. coli carbamoyl phosphate synthetase using limited proteolysis. Bioorganic and Medicinal Chemistry, 1995, 3, 525-532.	3.0	7
277	Finding homes for orphan enzymes. Perspectives in Science, 2016, 9, 3-7.	0.6	7
278	From the Three-Dimensional Structure of Phosphotriesterase. Biochemistry, 2021, 60, 3413-3415.	2.5	7
279	A Conserved Glutamate Controls the Commitment to Acyl-Adenylate Formation in Asparagine Synthetase. Biochemistry, 2010, 49, 9391-9401.	2.5	6
280	W. W. "Mo―Cleland: A Catalytic Life. Biochemistry, 2013, 52, 9092-9096.	2.5	6
281	The Discovery of a \hat{I}^2 -Lactone Synthetase. Biochemistry, 2017, 56, 1175-1176.	2.5	6
282	Reaction Mechanism and Three-Dimensional Structure of GDP- <scp>d</scp> -glycero-1±- <scp>d</scp> -manno-heptose 4,6-Dehydratase from <i>Campylobacter jejuni</i> . Biochemistry, 2022, 61, 1313-1322.	2.5	6
283	Metalloenzyme Catalysis. Advances in Catalysis, 1979, 28, 323-369.	0.2	5
284	Stereochemical probes of the argininosuccinate synthetase reaction. Biochemistry, 1986, 25, 4739-4744.	2.5	5
285	Mutational analysis of two putative domains within the large subunit of carbamoyl phosphate synthetase from escherichia coli. Bioorganic and Medicinal Chemistry Letters, 1992, 2, 319-322.	2.2	5
286	The Differentially Conserved Residues of Carbamoyl-Phosphate Synthetase. Journal of Biological Chemistry, 2000, 275, 5073-5080.	3.4	5
287	Effect of linker sequence on the stability of circularly permuted variants of ribonuclease T1. Bioorganic Chemistry, 2003, 31, 412-424.	4.1	5
288	Structural Characterization and Function Determination of a Nonspecific Carboxylate Esterase from the Amidohydrolase Superfamily with a Promiscuous Ability To Hydrolyze Methylphosphonate Esters. Biochemistry, 2014, 53, 3476-3485.	2.5	5

#	Article	IF	CITATIONS
289	Substrate Profile of the Phosphotriesterase Homology Protein from <i>Escherichia coli</i> . Biochemistry, 2018, 57, 6219-6227.	2.5	5
290	Manganese-Induced Substrate Promiscuity in the Reaction Catalyzed by Phosphoglutamine Cytidylyltransferase from <i>Campylobacter jejuni</i> . Biochemistry, 2019, 58, 2144-2151.	2.5	5
291	Functional and Structural Characterization of the UDP-Glucose Dehydrogenase Involved in Capsular Polysaccharide Biosynthesis from <i>Campylobacter jejuni</i> . Biochemistry, 2021, 60, 725-734.	2.5	5
292	Mechanism-based inactivation of rabbit muscle phosphoglucomutase by nojirimycin 6-phosphate. Biochemistry, 1988, 27, 7328-7332.	2.5	4
293	Role of the Hinge Loop Linking the N- and C-Terminal Domains of the Amidotransferase Subunit of Carbamoyl Phosphate Synthetase. Archives of Biochemistry and Biophysics, 2000, 380, 174-180.	3.0	4
294	Function Discovery and Structural Characterization of a Methylphosphonate Esterase. Biochemistry, 2015, 54, 2919-2930.	2.5	4
295	Functional Characterization of the <i>ycjQRS</i> Gene Cluster from <i>Escherichia coli</i> : A Novel Pathway for the Transformation of <scp>d</scp> -Gulosides to <scp>d</scp> -Glucosides. Biochemistry, 2019, 58, 1388-1399.	2.5	4
296	Atropselective Hydrolysis of Chiral Binol-Phosphate Esters Catalyzed by the Phosphotriesterase from <i>Sphingobium</i> sp. TCM1. Biochemistry, 2020, 59, 4463-4469.	2.5	4
297	Substrate Analogues for the Enzyme-Catalyzed Detoxification of the Organophosphate Nerve Agents—Sarin, Soman, and Cyclosarin. Biochemistry, 2021, 60, 2875-2887.	2.5	4
298	Structure of <i>N</i> -Formimino- <scp>l</scp> -glutamate Iminohydrolase from <i>Pseudomonas aeruginosa</i> . Biochemistry, 2015, 54, 890-897.	2.5	3
299	Structure, Mechanism, and Substrate Profiles of the Trinuclear Metallophosphatases from the Amidohydrolase Superfamily. Methods in Enzymology, 2018, 607, 187-216.	1.0	3
300	The Interaction of Monofluorofumarate with Adenylosuccinate Lyase. Journal of Enzyme Inhibition and Medicinal Chemistry, 1988, 2, 153-161.	0.5	2
301	Crystallization and preliminary X-ray crystallographic analysis of carbamoyl phosphate synthetase fromEscherichia coli. Acta Crystallographica Section D: Biological Crystallography, 1995, 51, 827-829.	2.5	2
302	Control of Stereoselectivity in Phosphotriesterase. Methods in Enzymology, 2004, 388, 256-266.	1.0	2
303	Deciphering the Enzymatic Function of the Bovine Enteric Infection-Related Protein YfeJ from Salmonella enterica Serotype Typhimurium. Biochemistry, 2019, 58, 1236-1245.	2.5	2
304	Interaction of bacterial luciferase with 8-substituted flavin mononucleotide derivatives Journal of Biological Chemistry, 1997, 272, 10982.	3.4	2
305	Second-Shell Amino Acid R266 Helps Determine <i>N</i> -Succinylamino Acid Racemase Reaction Specificity in Promiscuous <i>N</i> -Succinylamino Acid Racemase/ <i>o</i> -Succinylbenzoate Synthase Enzymes. Biochemistry, 2021, 60, 3829-3840.	2.5	2
306	Discovery and Functional Characterization of a Clandestine ATP-Dependent Amidoligase in the Biosynthesis of the Capsular Polysaccharide from <i>Campylobacter jejuni</i> . Biochemistry, 2022, 61, 117-124.	2.5	2

#	Article	IF	CITATIONS
307	Synthesis and enzymatic hydrolysis of a light-emitting substrate for phosphotriesterase. Bioorganic and Medicinal Chemistry Letters, 1994, 4, 2705-2708.	2.2	1
308	Phosphorus-31 NMR relaxation studies of diethyl P-methoxyphenyl phosphate bound to phosphotriesterase. Bioorganic and Medicinal Chemistry Letters, 1995, 5, 3067-3072.	2.2	1
309	Structure and Chemical Reaction Mechanism of LigU, an Enzyme That Catalyzes an Allylic Isomerization in the Bacterial Degradation of Lignin. Biochemistry, 2019, 58, 3494-3503.	2.5	1
310	Mechanism of Enyzmatic Phosphotriester Hydrolysis. , 1990, , 41-52.		1
311	Deciphering the Aldolase Function of STM3780 from a Bovine Enteric Infection-Related Gene Cluster in <i>Salmonella enterica</i> Serotype Typhimurium. Biochemistry, 2020, 59, 4573-4580.	2.5	1
312	Circular permutation of RNase T1 through PCR based site-directed mutagenesis. Techniques in Protein Chemistry, 1995, , 333-340.	0.3	0
313	Protection of Organophosphate-Inactivated Esterases with Phosphotriesterase. Toxicological Sciences, 1996, 31, 210-217.	3.1	0
314	Stereochemical Constraints on the Catalytic Hydrolysis of Organophosphate Nerve Agents by Phosphotriesterase. Phosphorus, Sulfur and Silicon and the Related Elements, 1999, 144, 521-524.	1.6	0
315	Enzymes with Molecular Tunnels. ChemInform, 2003, 34, no.	0.0	0
316	Not an Oxidase, But a Peroxidase. Science, 2013, 342, 943-944.	12.6	0
317	Kinetic Evolution to the Catalytic Core of the Bacterial Phosphotriesterase. , 2003, , .		0
318	Functional Annotation of Unknown Enzymes within the Amidohydrolase Superfamily. FASEB Journal, 2009, 23, 674.2.	0.5	0
319	Structure and Reaction Mechanism of YcjR, an Epimerase That Facilitates the Interconversion of d-Gulosides to d-Glucosides in Escherichia coli. Biochemistry, 2020, 59, 2069-2077.	2.5	0