Zhong-nan Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5228346/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Leaf anatomy, photosynthesis, and chloroplast ultrastructure of Heptacodium miconioides seedlings reveal adaptation to light environment. Environmental and Experimental Botany, 2022, 195, 104780.	4.2	25
2	Delayed callose degradation restores the fertility of multiple P/TGMS lines in <i>Arabidopsis</i> . Journal of Integrative Plant Biology, 2022, 64, 717-730.	8.5	7
3	The GA–DELLA–OsMS188 module controls male reproductive development in rice. New Phytologist, 2022, 233, 2629-2642.	7.3	16
4	Slow development allows redundant genes to restore the fertility of <i>rpg1</i> , a TGMS line in Arabidopsis. Plant Journal, 2022, 109, 1375-1385.	5.7	11
5	Documenting the Sporangium Development of the Polypodiales Fern Pteris multifida. Frontiers in Plant Science, 2022, 13, 878693.	3.6	1
6	AtRsmD Is Required for Chloroplast Development and Chloroplast Function in Arabidopsis thaliana. Frontiers in Plant Science, 2022, 13, 860945.	3.6	1
7	AtNusG, a chloroplast nucleoid protein of bacterial origin linking chloroplast transcriptional and translational machineries, is required for proper chloroplast gene expression in <i>Arabidopsis thaliana</i> . Nucleic Acids Research, 2022, 50, 6715-6734.	14.5	8
8	OsMS188 Is a Key Regulator of Tapetum Development and Sporopollenin Synthesis in Rice. Rice, 2021, 14, 4.	4.0	30
9	Development of the Middle Layer in the Anther of Arabidopsis. Frontiers in Plant Science, 2021, 12, 634114.	3.6	14
10	A dye combination for the staining of pollen coat and pollen wall. Plant Reproduction, 2021, 34, 91-101.	2.2	10
11	The pentatricopeptide repeat protein EMB1270 interacts with CFM2 to splice specific group II introns in <i>Arabidopsis</i> chloroplasts. Journal of Integrative Plant Biology, 2021, 63, 1952-1966.	8.5	10
12	A cellular mechanism underlying the restoration of thermo/photoperiod-sensitive genic male sterility. Molecular Plant, 2021, 14, 2104-2114.	8.3	22
13	Tapetal 3-Ketoacyl-Coenzyme A Synthases Are Involved in Pollen Coat Lipid Accumulation for Pollen-Stigma Interaction in Arabidopsis. Frontiers in Plant Science, 2021, 12, 770311.	3.6	8
14	A Novel Chloroplast Protein RNA Processing 8 Is Required for the Expression of Chloroplast Genes and Chloroplast Development in Arabidopsis thaliana. Frontiers in Plant Science, 2021, 12, 700975.	3.6	2
15	Slow Development Restores the Fertility of Photoperiod-Sensitive Male-Sterile Plant Lines. Plant Physiology, 2020, 184, 923-932.	4.8	18
16	Phenylpropanoid Derivatives Are Essential Components of Sporopollenin in Vascular Plants. Molecular Plant, 2020, 13, 1644-1653.	8.3	66
17	High-Level Production of Recombinant Snowdrop Lectin in Sugarcane and Energy Cane. Frontiers in Bioengineering and Biotechnology, 2020, 8, 977.	4.1	5
18	Arabidopsis ECERIFERUM3 (CER3) Functions to Maintain Hydration for Pollen–Stigma Recognition During Fertilization. Journal of Plant Biology, 2020, 63, 347-359.	2.1	6

#	Article	IF	CITATIONS
19	MS1, a direct target of MS188, regulates the expression of key sporophytic pollen coat protein genes in Arabidopsis. Journal of Experimental Botany, 2020, 71, 4877-4889.	4.8	50
20	The temporal regulation of TEK contributes to pollen wall exine patterning. PLoS Genetics, 2020, 16, e1008807.	3.5	15
21	Slowing development restores the fertility of thermo-sensitive male-sterile plant lines. Nature Plants, 2020, 6, 360-367.	9.3	42
22	mTERF8, a Member of the Mitochondrial Transcription Termination Factor Family, Is Involved in the Transcription Termination of Chloroplast Gene <i>psbJ</i> . Plant Physiology, 2020, 182, 408-423.	4.8	19
23	Slowing Development Facilitates Arabidopsis mgt Mutants to Accumulate Enough Magnesium for Pollen Formation and Fertility Restoration. Frontiers in Plant Science, 2020, 11, 621338.	3.6	6
24	The temporal regulation of TEK contributes to pollen wall exine patterning. , 2020, 16, e1008807.		0
25	The temporal regulation of TEK contributes to pollen wall exine patterning. , 2020, 16, e1008807.		Ο
26	The temporal regulation of TEK contributes to pollen wall exine patterning. , 2020, 16, e1008807.		0
27	The temporal regulation of TEK contributes to pollen wall exine patterning. , 2020, 16, e1008807.		Ο
28	The temporal regulation of TEK contributes to pollen wall exine patterning. , 2020, 16, e1008807.		0
29	The temporal regulation of TEK contributes to pollen wall exine patterning. , 2020, 16, e1008807.		0
30	The temporal regulation of TEK contributes to pollen wall exine patterning. , 2020, 16, e1008807.		0
31	The temporal regulation of TEK contributes to pollen wall exine patterning. , 2020, 16, e1008807.		Ο
32	Acyl-CoA synthetases from Physcomitrella, rice and Arabidopsis: different substrate preferences but common regulation by MS188 in sporopollenin synthesis. Planta, 2019, 250, 535-548.	3.2	8
33	An Essential Role for miRNA167 in Maternal Control of Embryonic and Seed Development. Plant Physiology, 2019, 180, 453-464.	4.8	61
34	AUXIN RESPONSE FACTOR17 Directly Regulates <i>MYB108</i> for Anther Dehiscence. Plant Physiology, 2019, 181, 645-655.	4.8	52
35	MORF2 tightly associates with MORF9 to regulate chloroplast RNA editing in Arabidopsis. Plant Science, 2019, 278, 64-69.	3.6	22
36	pTAC10, an S1-domain-containing component of the transcriptionally active chromosome complex, is essential for plastid gene expression in Arabidopsis thaliana and is phosphorylated by chloroplast-targeted casein kinase II. Photosynthesis Research, 2018, 137, 69-83.	2.9	17

#	Article	IF	CITATIONS
37	Positive regulation of <i>AMS</i> by TDF1 and the formation of a TDF1–AMS complex are required for anther development in <i>Arabidopsis thaliana</i> . New Phytologist, 2018, 217, 378-391.	7.3	74
38	Auxin production in diploid microsporocytes is necessary and sufficient for early stages of pollen development. PLoS Genetics, 2018, 14, e1007397.	3.5	63
39	The Canonical E2Fs Are Required for Germline Development in Arabidopsis. Frontiers in Plant Science, 2018, 9, 638.	3.6	25
40	The Regulation of Sporopollenin Biosynthesis Genes for Rapid Pollen Wall Formation. Plant Physiology, 2018, 178, 283-294.	4.8	106
41	Ethylene signaling is critical for synergid cell functional specification and pollen tube attraction. Plant Journal, 2018, 96, 176-187.	5.7	18
42	Anther Endothecium-Derived Very-Long-ChainÂFatty Acids Facilitate Pollen Hydration inÂArabidopsis. Molecular Plant, 2018, 11, 1101-1104.	8.3	26
43	A nuclear-encoded protein, mTERF6, mediates transcription termination of rpoA polycistron for plastid-encoded RNA polymerase-dependent chloroplast gene expression and chloroplast development. Scientific Reports, 2018, 8, 11929.	3.3	31
44	OsPKS1 is required for sexine layer formation, which shows functional conservation between rice and Arabidopsis. Plant Science, 2018, 277, 145-154.	3.6	19
45	The ISWI remodeler in plants: protein complexes, biochemical functions, and developmental roles. Chromosoma, 2017, 126, 365-373.	2.2	18
46	Porphobilinogen deaminase <scp>HEMC</scp> interacts with the <scp>PPR</scp> â€protein At <scp>ECB</scp> 2 for chloroplast <scp>RNA</scp> editing. Plant Journal, 2017, 92, 546-556.	5.7	27
47	Model for the role of auxin polar transport in patterning of the leaf adaxial–abaxial axis. Plant Journal, 2017, 92, 469-480.	5.7	35
48	<i>EMB2738</i> , which encodes a putative plastidâ€ŧargeted GTPâ€binding protein, is essential for embryogenesis and chloroplast development in higher plants. Physiologia Plantarum, 2017, 161, 414-430.	5.2	10
49	ACOS5 is required for primexine formation and exine pattern formation during microsporogenesis in Arabidopsis. Journal of Plant Biology, 2017, 60, 404-412.	2.1	11
50	Gene Regulatory Network for Tapetum Development in Arabidopsis thaliana. Frontiers in Plant Science, 2017, 8, 1559.	3.6	64
51	Fine regulation of ARF17 for anther development and pollen formation. BMC Plant Biology, 2017, 17, 243.	3.6	34
52	Regulation of sporopollenin synthesis for pollen wall formation in plant. Science China Life Sciences, 2016, 59, 1335-1337.	4.9	6
53	Pollen wall pattern in Arabidopsis. Science Bulletin, 2016, 61, 832-837.	9.0	30
54	Hepatic ATF6 Increases Fatty Acid Oxidation to Attenuate Hepatic Steatosis in Mice Through Peroxisome Proliferator–Activated Receptor α. Diabetes, 2016, 65, 1904-1915.	0.6	96

#	Article	IF	CITATIONS
55	OsACOS12, an orthologue of Arabidopsis acyl-CoA synthetase5, plays an important role in pollen exine formation and anther development in rice. BMC Plant Biology, 2016, 16, 256.	3.6	68
56	The transcription factors <scp>MS</scp> 188 and <scp>AMS</scp> form a complex to activate the expression of <i><scp>CYP</scp>703A2</i> for sporopollenin biosynthesis in <i>Arabidopsis thaliana</i> . Plant Journal, 2016, 88, 936-946.	5.7	73
57	TAA family contributes to auxin production during de novo regeneration of adventitious roots from Arabidopsis leaf explants. Science Bulletin, 2016, 61, 1728-1731.	9.0	13
58	Recent progress on plant regeneration. Chinese Science Bulletin, 2016, 61, 3887-3902.	0.7	2
59	Proteomic Insight into the Response of Arabidopsis Chloroplasts to Darkness. PLoS ONE, 2016, 11, e0154235.	2.5	20
60	<i>Magnesium Transporter 5</i> plays an important role in Mg transport for male gametophyte development in <i>Arabidopsis</i> . Plant Journal, 2015, 84, 925-936.	5.7	53
61	Rubisco accumulation is important for the greening of the fln2-4 mutant in Arabidopsis. Plant Science, 2015, 236, 185-194.	3.6	7
62	Ultrastructure analysis reveals sporopollenin deposition and nexine formation at early stage of pollen wall development in Arabidopsis. Science Bulletin, 2015, 60, 273-276.	9.0	19
63	Arabidopsis AT-hook Protein TEK Positively Regulates the Expression of Arabinogalactan Proteins for Nexine Formation. Molecular Plant, 2015, 8, 251-260.	8.3	80
64	The functional analysis of OsTDF1 reveals a conserved genetic pathway for tapetal development between rice and Arabidopsis. Science Bulletin, 2015, 60, 1073-1082.	9.0	69
65	Enzyme activities of <scp>A</scp> rabidopsis inositol polyphosphate kinases <scp>A</scp> t <scp>IPK</scp> 2l± and <scp>A</scp> t <scp>IPK</scp> 2l² are involved in pollen development, pollen tube guidance and embryogenesis. Plant Journal, 2015, 82, 758-771.	5.7	21
66	PPR protein PDM1/SEL1 is involved in RNA editing and splicing of plastid genes in Arabidopsis thaliana. Photosynthesis Research, 2015, 126, 311-321.	2.9	40
67	Overexpression of AtTTP Affects ARF17 Expression and Leads to Male Sterility in Arabidopsis. PLoS ONE, 2015, 10, e0117317.	2.5	40
68	Nuclear-encoded factors associated with the chloroplast transcription machinery of higher plants. Frontiers in Plant Science, 2014, 5, 316.	3.6	95
69	<scp>DYT</scp> 1 directly regulates the expression of <i><scp>TDF</scp>1</i> for tapetum development and pollen wall formation in <scp>A</scp> rabidopsis. Plant Journal, 2014, 80, 1005-1013.	5.7	137
70	The tapetal AHL family protein TEK determines nexine formation in the pollen wall. Nature Communications, 2014, 5, 3855.	12.8	113
71	Roles of the nuclear-encoded chloroplast SMR domain-containing PPR protein SVR7 in photosynthesis and oxidative stress tolerance in Arabidopsis. Journal of Plant Biology, 2014, 57, 291-301.	2.1	18
72	<i>WOX11</i> and <i>12</i> Are Involved in the First-Step Cell Fate Transition during de Novo Root Organogenesis in <i>Arabidopsis</i> . Plant Cell, 2014, 26, 1081-1093.	6.6	415

#	Article	IF	CITATIONS
73	Arabidopsis AT-hook protein TEK positively regulates the expression of arabinogalactan proteins in controlling nexine layer formation in the pollen wall. Molecular Plant, 2014, , .	8.3	1
74	AtECB1/MRL7, a Thioredoxin-Like Fold Protein with Disulfide Reductase Activity, Regulates Chloroplast Gene Expression and Chloroplast Biogenesis in Arabidopsis thaliana. Molecular Plant, 2014, 7, 206-217.	8.3	32
75	Molecular Cell Biology of Pollen Walls. Plant Cell Monographs, 2014, , 179-205.	0.4	20
76	Arabidopsis RPG1 is important for primexine deposition and functions redundantly with RPG2 for plant fertility at the late reproductive stage. Plant Reproduction, 2013, 26, 83-91.	2.2	117
77	CLV1 interacts with UFO in modulation of gynoecium development in Arabidopsis thaliana. Journal of Plant Biology, 2013, 56, 13-23.	2.1	5
78	DEX1, a plasma membrane-localized protein, functions in microspore development by affecting CalS5 expression in Arabidopsis thaliana. Science Bulletin, 2013, 58, 2855-2861.	1.7	9
79	ATPG is required for the accumulation and function of chloroplast ATP synthase in Arabidopsis. Science Bulletin, 2013, 58, 3224-3232.	1.7	9
80	A Single Aminoâ€Acid Substitution at Lysine 40 of an <i>Arabidopsis thaliana</i> αâ€ŧubulin Causes Extensive Cell Proliferation and Expansion Defects. Journal of Integrative Plant Biology, 2013, 55, 209-220.	8.5	20
81	CYCLIN-DEPENDENT KINASE G1 Is Associated with the Spliceosome to Regulate <i>CALLOSE SYNTHASE5</i> Splicing and Pollen Wall Formation in <i>Arabidopsis</i> Â Â Â. Plant Cell, 2013, 25, 637-648.	6.6	69
82	<scp>TAC7</scp> , an essential component of the plastid transcriptionally active chromosome complex, interacts with <scp>FLN1</scp> , <scp>TAC10</scp> , <scp>TAC12</scp> and <scp>TAC14</scp> to regulate chloroplast gene expression in <i>Arabidopsis thaliana</i> . Physiologia Plantarum, 2013, 148, 408-421.	5.2	49
83	AUXIN RESPONSE FACTOR17 Is Essential for Pollen Wall Pattern Formation in Arabidopsis Â. Plant Physiology, 2013, 162, 720-731.	4.8	150
84	<scp>SLIDE</scp> , The Protein Interacting Domain of Imitation Switch Remodelers, Binds <scp>DDT</scp> â€ <scp>D</scp> omain Proteins of Different Subfamilies in Chromatin Remodeling Complexes. Journal of Integrative Plant Biology, 2013, 55, 928-937.	8.5	22
85	The Reduced Plastid-Encoded Polymerase-Dependent Plastid Gene Expression Leads to the Delayed Greening of the Arabidopsis fln2 Mutant. PLoS ONE, 2013, 8, e73092.	2.5	28
86	Regulatory role of Arabidopsis pTAC14 in chloroplast development and plastid gene expression. Plant Signaling and Behavior, 2012, 7, 1354-1356.	2.4	15
87	<i>NO PRIMEXINE AND PLASMA MEMBRANE UNDULATION</i> Is Essential for Primexine Deposition and Plasma Membrane Undulation during Microsporogenesis in Arabidopsis. Plant Physiology, 2012, 158, 264-272.	4.8	60
88	Glycerol-3-Phosphate Acyltransferase 6 (GPAT6) Is Important for Tapetum Development in Arabidopsis and Plays Multiple Roles in Plant Fertility. Molecular Plant, 2012, 5, 131-142.	8.3	68
89	The Arabidopsis pentatricopeptide repeat protein PDM1 is associated with the intergenic sequence of S11-rpoA for rpoA monocistronic RNA cleavage. Science Bulletin, 2012, 57, 3452-3459.	1.7	16
90	Multiple impairments in male reproduction 1 (mimr1), a novel male-sterile mutant of Arabidopsis thaliana, shows several defects in male reproductive development. Journal of Plant Biology, 2012, 55, 209-217.	2.1	0

#	Article	IF	CITATIONS
91	<i>Cdi</i> gene is required for pollen germination and tube growth in Arabidopsis. FEBS Letters, 2012, 586, 1027-1031.	2.8	13
92	Imitation Switch chromatin remodeling factors and their interacting RINGLET proteins act together in controlling the plant vegetative phase in Arabidopsis. Plant Journal, 2012, 72, 261-270.	5.7	69
93	The <i>Arabidopsis thaliana</i> DSB formation (<i>AtDFO</i>) gene is required for meiotic doubleâ€strand break formation. Plant Journal, 2012, 72, 271-281.	5.7	46
94	ST273 Is Essential for Tapetum and Microspore Development in Arabidopsis thaliana. Plant Diversity and Resources, 2012, 34, 502.	0.2	0
95	Large cliques in Arabidopsis gene coexpression network and motif discovery. Journal of Plant Physiology, 2011, 168, 611-618.	3.5	24
96	A Point Mutation in the Pentatricopeptide repeat Motif of the AtECB2 Protein Causes Delayed Chloroplast DevelopmentF. Journal of Integrative Plant Biology, 2011, 53, 258-269.	8.5	32
97	A Genetic Pathway for Tapetum Development and Function in Arabidopsis. Journal of Integrative Plant Biology, 2011, 53, 892-900.	8.5	155
98	Prediction of regulatory interactions in Arabidopsis using gene-expression data and support vector machines. Plant Physiology and Biochemistry, 2011, 49, 280-283.	5.8	5
99	The GDC1 Gene Encodes a Novel Ankyrin Domain-Containing Protein That Is Essential for Grana Formation in Arabidopsis Â. Plant Physiology, 2011, 155, 130-141.	4.8	31
100	A Functional Component of the Transcriptionally Active Chromosome Complex, Arabidopsis pTAC14, Interacts with pTAC12/HEMERA and Regulates Plastid Gene Expression Â. Plant Physiology, 2011, 157, 1733-1745.	4.8	89
101	AtMYB103 is a crucial regulator of several pathways affecting Arabidopsis anther development. Science China Life Sciences, 2010, 53, 1112-1122.	4.9	52
102	Construction of a gene regulatory network for Arabidopsis based on metabolic pathway data. Science Bulletin, 2010, 55, 158-162.	1.7	3
103	OsMYB103 is required for rice anther development by regulating tapetum development and exine formation. Science Bulletin, 2010, 55, 3288-3297.	1.7	32
104	The Cucumber Lateral Suppressor Gene (CLS) Is Functionally Associated with Axillary Meristem Initiation. Plant Molecular Biology Reporter, 2010, 28, 421-429.	1.8	12
105	Mapping and Analysis of a Yellow Mutant <l>chlm-4</l> of <l>Arabidopsis thaliana</l> (Cruciferae). Acta Botanica Yunnanica, 2010, 32, 134-140.	0.1	3
106	MULTIPOLAR SPINDLE 1 (MPS1), a novel coiled oil protein of <i>Arabidopsis thaliana</i> , is required for meiotic spindle organization. Plant Journal, 2009, 59, 1001-1010.	5.7	41
107	AtECB2, a pentatricopeptide repeat protein, is required for chloroplast transcript <i>accD</i> RNA editing and early chloroplast biogenesis in <i>Arabidopsis thaliana</i> . Plant Journal, 2009, 59, 1011-1023.	5.7	139
108	Translocons on the inner and outer envelopes of chloroplasts share similar evolutionary origin in <i>Arabidopsis thaliana</i> . Journal of Evolutionary Biology, 2009, 22, 1418-1428.	1.7	12

#	Article	IF	CITATIONS
109	Genome-wide Analysis of PHD-finger Protein Family in <i>Arabidopsis thaliana</i> . Acta Botanica Yunnanica, 2009, 31, 227-238.	0.1	5
110	Mapping of an <i>Arabidopsis</i> Gene Involved in Microspore Development. Acta Botanica Yunnanica, 2009, 30, 471-476.	0.1	0
111	Prediction of anther-expressed gene regulation in Arabidopsis. Science Bulletin, 2008, 53, 3198-3203.	9.0	2
112	Construction of a chloroplast protein interaction network and functional mining of photosynthetic proteins in Arabidopsis thaliana. Cell Research, 2008, 18, 1007-1019.	12.0	42
113	<i>Defective in Tapetal Development and Function 1</i> is essential for anther development and tapetal function for microspore maturation in Arabidopsis. Plant Journal, 2008, 55, 266-277.	5.7	293
114	<i>RUPTURED POLLEN GRAIN1</i> , a Member of the MtN3/saliva Gene Family, Is Crucial for Exine Pattern Formation and Cell Integrity of Microspores in Arabidopsis Â. Plant Physiology, 2008, 147, 852-863.	4.8	271
115	AtPID: Arabidopsis thaliana protein interactome database an integrative platform for plant systems biology. Nucleic Acids Research, 2007, 36, D999-D1008.	14.5	128
116	Transcription factor <i>AtMYB103</i> is required for anther development by regulating tapetum development, callose dissolution and exine formation in Arabidopsis. Plant Journal, 2007, 52, 528-538.	5.7	339
117	Intracellular Delivery of Quantum Dots TaggedÂAntisenseÂOligodeoxynucleotides by Functionalized Multiwalled Carbon Nanotubes. Nano Letters, 2007, 7, 2976-2980.	9.1	149
118	Mapping of quantitative trait loci for gibberellic acid response at rice (Oryza sativa L.) seedling stage. Plant Science, 2006, 170, 12-17.	3.6	3
119	Fine mapping of an Arabidopsis thaliana male sterile mutant EC2-157. Frontiers of Biology in China: Selected Publications From Chinese Universities, 2006, 1, 270-274.	0.2	0
120	Asymmetric PCR Using the Primers Anchored on the Surface of Magnetic Nanoparticles. Bulletin of the Chemical Society of Japan, 2005, 78, 1649-1653.	3.2	4
121	The Putative RNA-Dependent RNA Polymerase RDR6 Acts Synergistically with ASYMMETRIC LEAVES1 and 2 to Repress BREVIPEDICELLUS and MicroRNA165/166 in Arabidopsis Leaf Development. Plant Cell, 2005, 17, 2157-2171.	6.6	168
122	Polymerase chain reaction of Au nanoparticle-bound primers. Science Bulletin, 2005, 50, 2016.	1.7	7
123	Development of Genome-Wide DNA Polymorphism Database for Map-Based Cloning of Rice Genes Â. Plant Physiology, 2004, 135, 1198-1205.	4.8	285
124	Sequence Analysis of a 282-Kilobase Region Surrounding the Citrus Tristeza Virus Resistance Gene (<i>Ctv</i>) Locus in <i>Poncirus trifoliata</i> L. Raf Plant Physiology, 2003, 131, 482-492.	4.8	92
125	Isolation of Large-Terminal Sequences of BAC Inserts Based on Double-Restriction-Enzyme Digestion Followed by Anchored PCR. , 2002, 192, 337-342.		0
126	Construction of a 1.2-Mb contig including the citrus tristeza virus resistance gene locus using a bacterial artificial chromosome library of <i>Poncirus trifoliata</i> (L.) Raf Genome, 2001, 44, 382-393.	2.0	36

#	Article	IF	CITATIONS
127	Construction of a 1.2-Mb contig including the citrus tristeza virus resistance gene locus using a bacterial artificial chromosome library of <i>Poncirus trifoliata</i> (L.) Raf Genome, 2001, 44, 382-393.	2.0	26

Agrobacterium -mediated transformation of the commercially important grapefruit cultivar Rio Red () Tj ETQq0 0 0 ggBT /Overlock 10 Tf

129	Isolation of large terminal sequences of BAC inserts based on double-restriction-enzyme digestion followed by anchored PCR. Genome, 2000, 43, 412-415.	2.0	8
130	Molecular characterization of an isolate of citrus tristeza virus that causes severe symptoms in sweet orange. Virus Genes, 1999, 19, 131-142.	1.6	76
131	Cauliflower inflorescence protoplast culture and plant regeneration. Plant Cell, Tissue and Organ Culture, 1994, 36, 191-195.	2.3	11