Isao Matsuo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5227556/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Identification of Cell Autonomous and Non-Cell Autonomous Functions of Heparan Glycosaminoglycan Chains by Creating Chimeric Mouse. Methods in Molecular Biology, 2022, 2303, 579-593.	0.9	0
2	BET proteins are essential for the specification and maintenance of the epiblast lineage in mouse preimplantation embryos. BMC Biology, 2022, 20, 64.	3.8	1
3	USP39 is essential for mammalian epithelial morphogenesis through upregulation of planar cell polarity components. Communications Biology, 2022, 5, 378.	4.4	4
4	Intrauterine Pressures Adjusted by Reichert's Membrane Are Crucial for Early Mouse Morphogenesis. Cell Reports, 2020, 31, 107637.	6.4	20
5	Competition for Mitogens Regulates Spermatogenic Stem Cell Homeostasis in an Open Niche. Cell Stem Cell, 2019, 24, 79-92.e6.	11.1	105
6	Cytoplasmic localization of GRHL3 upon epidermal differentiation triggers cell shape change for epithelial morphogenesis. Nature Communications, 2018, 9, 4059.	12.8	12
7	Mechanical perspectives on the anterior-posterior axis polarization of mouse implanted embryos. Mechanisms of Development, 2017, 144, 62-70.	1.7	16
8	Coordinately Co-opted Multiple Transposable Elements Constitute an Enhancer for wnt5a Expression in the Mammalian Secondary Palate. PLoS Genetics, 2016, 12, e1006380.	3.5	47
9	Fate Specification of Neural Plate Border by Canonical Wnt Signaling and Grhl3 is Crucial for Neural Tube Closure. EBioMedicine, 2015, 2, 513-527.	6.1	46
10	Extracellular distribution of diffusible growth factors controlled by heparan sulfate proteoglycans during mammalian embryogenesis. Philosophical Transactions of the Royal Society B: Biological Sciences, 2014, 369, 20130545.	4.0	76
11	Divergent Roles of Heparan Sulfate in Regulation of FGF Signaling During Mammalian Embryogenesis. , 2014, , 239-251.		2
12	Extracellular modulation of Fibroblast Growth Factor signaling through heparan sulfate proteoglycans in mammalian development. Current Opinion in Genetics and Development, 2013, 23, 399-407.	3.3	84
13	External Mechanical Cues Trigger the Establishment of the Anterior-Posterior Axis in Early Mouse Embryos. Developmental Cell, 2013, 27, 131-144.	7.0	125
14	Transcriptional regulatory networks in epiblast cells and during anterior neural plate development as modeled in epiblast stem cells. Development (Cambridge), 2012, 139, 3926-3937.	2.5	75
15	Brd2 is required for cell cycle exit and neuronal differentiation through the E2F1 pathway in mouse neuroepithelial cells. Biochemical and Biophysical Research Communications, 2012, 425, 762-768.	2.1	36
16	Transcriptional regulatory networks in epiblast cells and during anterior neural plate development as modeled in epiblast stem cells. Development (Cambridge), 2012, 139, 4675-4675.	2.5	2
17	Deletion of Otx2 in GnRH Neurons Results in a Mouse Model of Hypogonadotropic Hypogonadism. Molecular Endocrinology, 2011, 25, 833-846.	3.7	45
18	Cell Surface Heparan Sulfate Chains Regulate Local Reception of FGF Signaling in the Mouse Embryo. Developmental Cell, 2011, 21, 257-272.	7.0	99

Isao Matsuo

#	Article	IF	CITATIONS
19	FGF signaling directs a center-to-pole expansion of tubulogenesis in mouse testis differentiation. Development (Cambridge), 2010, 137, 303-312.	2.5	79
20	Dosage-dependent hedgehog signals integrated with Wnt/β-catenin signaling regulate external genitalia formation as an appendicular program. Development (Cambridge), 2009, 136, 3969-3978.	2.5	88
21	Experience-Dependent Transfer of Otx2 Homeoprotein into the Visual Cortex Activates Postnatal Plasticity. Cell, 2008, 134, 508-520.	28.9	437
22	Possible involvement of SINEs in mammalian-specific brain formation. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 4220-4225.	7.1	177
23	Functional Roles of Otx2 Transcription Factor in Postnatal Mouse Retinal Development. Molecular and Cellular Biology, 2007, 27, 8318-8329.	2.3	181
24	Crucial roles of Foxa2 in mouse anterior-posterior axis polarization via regulation of anterior visceral endoderm-specific genes. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 5919-5924.	7.1	46
25	Dkk3 re BAC transgenic mouse line: a tool for highly efficient gene deletion in retinal progenitor cells. Genesis, 2007, 45, 502-507.	1.6	79
26	Making very similar embryos with divergent genomes: conservation of regulatory mechanisms of Otx between the ascidians Halocynthia roretzi and Ciona intestinalis. Development (Cambridge), 2005, 132, 1663-1674.	2.5	73
27	Canonical Wnt Signaling and Its Antagonist Regulate Anterior-Posterior Axis Polarization by Guiding Cell Migration in Mouse Visceral Endoderm. Developmental Cell, 2005, 9, 639-650.	7.0	163
28	Regulation of Otx2 expression and its functions in mouse epiblast and anterior neuroectoderm. Development (Cambridge), 2004, 131, 3307-3317.	2.5	67
29	Regulation of Otx2 expression and its functions in mouse forebrain and midbrain. Development (Cambridge), 2004, 131, 3319-3331.	2.5	91
30	Characterization of the pufferfish Otx2 cis-regulators reveals evolutionarily conserved genetic mechanisms for vertebrate head specification. Development (Cambridge), 2004, 131, 57-71.	2.5	74
31	Otx2 homeobox gene controls retinal photoreceptor cell fate and pineal gland development. Nature Neuroscience, 2003, 6, 1255-1263.	14.8	521
32	Otx2 Is Required to Respond to Signals from Anterior Neural Ridge for Forebrain Specification. Developmental Biology, 2002, 242, 204-223.	2.0	58
33	Genetic modifiers of otocephalic phenotypes in <i>Otx2</i> heterozygous mutant mice. Development (Cambridge), 2002, 129, 4347-4357.	2.5	69
34	Genetic modifiers of otocephalic phenotypes in Otx2 heterozygous mutant mice. Development (Cambridge), 2002, 129, 4347-57.	2.5	24
35	Complementary Functions of Otx2 and Cripto in Initial Patterning of Mouse Epiblast. Developmental Biology, 2001, 235, 12-32.	2.0	70
36	<i>Emx2</i> directs the development of diencephalon in cooperation with <i>Otx2</i> . Development (Cambridge), 2001, 128, 2433-2450.	2.5	55

Isao Matsuo

#	Article	IF	CITATIONS
37	OTX2 Directly Interacts with LIM1 and HNF-3Î ² . Biochemical and Biophysical Research Communications, 2000, 267, 64-70.	2.1	55
38	Visceral Endoderm Mediates Forebrain Development by Suppressing Posteriorizing Signals. Developmental Biology, 2000, 225, 304-321.	2.0	203
39	A new murine zinc finger gene, Opr. Mechanisms of Development, 2000, 98, 161-164.	1.7	30
40	Cooperation between Otx1 and Otx2 genes in developmental patterning of rostral brain. Mechanisms of Development, 1997, 69, 125-141.	1.7	95
41	Mouse homeobox-containing gene, Otx2, maps to mouse Chromosome 14. Mammalian Genome, 1997, 8, 292-293.	2.2	3
42	Developmental patterning and evolution of the mammalian viscerocranium: Genetic insights into comparative morphology. , 1997, 209, 139-155.		99
43	Otx1 function overlaps with Otx2 in development of mouse forebrain and midbrain. Genes To Cells, 1996, 1, 1031-1044.	1.2	55
44	The cooperative interaction between two motifis of an enhancer element of the chicken αA-crystallin gene, αCE1 and αCE2, confers lens-specific expression. Nucleic Acids Research, 1992, 20, 3701-3712.	14.5	66
45	Identification of the contact sites of a factor that interacts with motif I (>αCE1) of the chicken αA-crystallin lens-specific enhancer. Biochemical and Biophysical Research Communications, 1992, 184, 24-30.	2.1	28