Mark Bates

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5227517/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nature Methods, 2006, 3, 793-796.	19.0	6,819
2	Three-Dimensional Super-Resolution Imaging by Stochastic Optical Reconstruction Microscopy. Science, 2008, 319, 810-813.	12.6	2,470
3	Super-Resolution Fluorescence Microscopy. Annual Review of Biochemistry, 2009, 78, 993-1016.	11.1	1,450
4	Multicolor Super-Resolution Imaging with Photo-Switchable Fluorescent Probes. Science, 2007, 317, 1749-1753.	12.6	1,347
5	Evaluation of fluorophores for optimal performance in localization-based super-resolution imaging. Nature Methods, 2011, 8, 1027-1036.	19.0	1,198
6	Short-Range Spectroscopic Ruler Based on a Single-Molecule Optical Switch. Physical Review Letters, 2005, 94, 108101.	7.8	308
7	Super-resolution microscopy by nanoscale localization of photo-switchable fluorescent probes. Current Opinion in Chemical Biology, 2008, 12, 505-514.	6.1	194
8	Nanobodies: site-specific labeling for super-resolution imaging, rapid epitope-mapping and native protein complex isolation. ELife, 2015, 4, e11349.	6.0	177
9	Fluorescent Photoswitchable Diarylethenes for Biolabeling and Single-Molecule Localization Microscopies with Optical Superresolution. Journal of the American Chemical Society, 2017, 139, 6611-6620.	13.7	177
10	Multicolor Superâ€Resolution Fluorescence Imaging via Multiâ€Parameter Fluorophore Detection. ChemPhysChem, 2012, 13, 99-107.	2.1	137
11	Dynamics of DNA Molecules in a Membrane Channel Probed by Active Control Techniques. Biophysical Journal, 2003, 84, 2366-2372.	0.5	136
12	A toolbox of anti–mouse and anti–rabbit IgG secondary nanobodies. Journal of Cell Biology, 2018, 217, 1143-1154.	5.2	111
13	Stochastic Optical Reconstruction Microscopy (STORM): A Method for Superresolution Fluorescence Imaging. Cold Spring Harbor Protocols, 2013, 2013, pdb.top075143.	0.3	92
14	3D Multicolor Super-Resolution Imaging Offers Improved Accuracy in Neuron Tracing. PLoS ONE, 2012, 7, e30826.	2.5	67
15	Gpufit: An open-source toolkit for GPU-accelerated curve fitting. Scientific Reports, 2017, 7, 15722.	3.3	45
16	FKBPL-based peptide, ALM201, targets angiogenesis and cancer stem cells in ovarian cancer. British Journal of Cancer, 2020, 122, 361-371.	6.4	38
17	The MyD88+ Phenotype Is an Adverse Prognostic Factor in Epithelial Ovarian Cancer. PLoS ONE, 2014, 9, e100816.	2.5	36
18	3D particle averaging and detection of macromolecular symmetry in localization microscopy. Nature Communications, 2021, 12, 2847.	12.8	32

Mark Bates

#	Article	IF	CITATIONS
19	Optimal precision and accuracy in 4Pi-STORM using dynamic spline PSF models. Nature Methods, 2022, 19, 603-612.	19.0	21
20	Too MAD or not MAD enough: The duplicitous role of the spindle assembly checkpoint protein MAD2 in cancer. Cancer Letters, 2020, 469, 11-21.	7.2	18
21	Preparation of Photoswitchable Labeled Antibodies for STORM Imaging. Cold Spring Harbor Protocols, 2013, 2013, pdb.prot075168.	0.3	15
22	CD10â^'/ALDHâ^' cells are the sole cisplatin-resistant component of a novel ovarian cancer stem cell hierarchy. Cell Death and Disease, 2017, 8, e3128-e3128.	6.3	14
23	YB-1: The key to personalised prostate cancer management?. Cancer Letters, 2020, 490, 66-75.	7.2	13
24	Prognostic features of the tumour microenvironment in oesophageal adenocarcinoma. Biochimica Et Biophysica Acta: Reviews on Cancer, 2021, 1876, 188598.	7.4	8
25	The role of the MAD2-TLR4-MyD88 axis in paclitaxel resistance in ovarian cancer. PLoS ONE, 2020, 15, e0243715.	2.5	7
26	Exposure to tobacco smoke measured by urinary nicotine metabolites increases risk of p16/Ki-67 co-expression and high-grade cervical neoplasia in HPV positive women: A two year prospective study. Cancer Epidemiology, 2020, 68, 101793.	1.9	6
27	The induction of a mesenchymal phenotype by platelet cloaking of cancer cells is a universal phenomenon. Translational Oncology, 2021, 14, 101229.	3.7	6
28	MyD88 is an essential component of retinoic acid-induced differentiation in human pluripotent embryonal carcinoma cells. Cell Death and Differentiation, 2017, 24, 1975-1986.	11.2	5
29	Prevalence of tumor BRCA1 and BRCA2 dysfunction in unselected patients with ovarian cancer. Obstetrics and Gynecology Science, 2020, 63, 643-654.	1.6	4
30	Mapping Neuronal Connectivity Using Stochastic Optical Reconstruction Microscopy (Storm): The Brainstorm Project. Biophysical Journal, 2010, 98, 214a.	0.5	0
31	The role of the MAD2-TLR4-MyD88 axis in paclitaxel resistance in ovarian cancer. , 2020, 15, e0243715.		0
32	The role of the MAD2-TLR4-MyD88 axis in paclitaxel resistance in ovarian cancer. , 2020, 15, e0243715.		0
33	The role of the MAD2-TLR4-MyD88 axis in paclitaxel resistance in ovarian cancer. , 2020, 15, e0243715.		0
34	The role of the MAD2-TLR4-MyD88 axis in paclitaxel resistance in ovarian cancer. , 2020, 15, e0243715.		0