Michael T Treadway

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5225902/publications.pdf

Version: 2024-02-01

63 papers

9,069 citations

34 h-index 62 g-index

66 all docs 66
docs citations

66 times ranked 9131 citing authors

#	Article	IF	CITATIONS
1	Inflammation as a Pathophysiologic Pathway to Anhedonia: Mechanisms and Therapeutic Implications. Current Topics in Behavioral Neurosciences, 2022, , 397-419.	1.7	20
2	Vigor, Effort-Related Aspects of Motivation and Anhedonia. Current Topics in Behavioral Neurosciences, 2022, , 325-353.	1.7	16
3	Dose-response effects of d-amphetamine on effort-based decision-making and reinforcement learning. Neuropsychopharmacology, 2021, 46, 1078-1085.	5.4	36
4	Distinct regions of the striatum underlying effort, movement initiation and effort discounting. Nature Human Behaviour, 2021, 5, 378-388.	12.0	23
5	The effort-doors task: Examining the temporal dynamics of effort-based reward processing using ERPs. Neurolmage, 2021, 228, 117656.	4.2	19
6	Inflammation is associated with future depressive symptoms among older adults. Brain, Behavior, & Immunity - Health, 2021, 13, 100226.	2.5	13
7	Reduced adaptation of glutamatergic stress response is associated with pessimistic expectations in depression. Nature Communications, 2021, 12, 3166.	12.8	16
8	Acute drug effects differentially predict desire to take dextroamphetamine again for work and recreation. Psychopharmacology, 2021, 238, 2815-2826.	3.1	1
9	Aiding and Abetting Anhedonia: Impact of Inflammation on the Brain and Pharmacological Implications. Pharmacological Reviews, 2021, 73, 1084-1117.	16.0	36
10	Two scene navigation systems dissociated by deliberate versus automatic processing. Cortex, 2021, 140, 199-209.	2.4	5
11	Mapping Disease Course Across the Mood Disorder Spectrum Through a Research Domain Criteria Framework. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 2021, 6, 706-715.	1.5	10
12	Gene signatures in peripheral blood immune cells related to insulin resistance and low tyrosine metabolism define a sub-type of depression with high CRP and anhedonia. Brain, Behavior, and Immunity, 2020, 88, 161-165.	4.1	42
13	Depression genetic risk score is associated with anhedonia-related markers across units of analysis. Translational Psychiatry, 2019, 9, 236.	4.8	14
14	Effort-based decision-making impairment in patients with clinically-stabilized first-episode psychosis and its relationship with amotivation and psychosocial functioning. European Neuropsychopharmacology, 2019, 29, 629-642.	0.7	31
15	Can't or Won't? Immunometabolic Constraints on Dopaminergic Drive. Trends in Cognitive Sciences, 2019, 23, 435-448.	7.8	88
16	The Impact of Stress and Major Depressive Disorder on Hippocampal and Medial PrefrontalÂCortex Morphology. Biological Psychiatry, 2019, 85, 443-453.	1.3	298
17	Effortful goal-directed behavior in schizophrenia: Computational subtypes and associations with cognition Journal of Abnormal Psychology, 2019, 128, 710-722.	1.9	39
18	Anhedonia in depression: biological mechanisms and computational models. Current Opinion in Behavioral Sciences, 2018, 22, 128-135.	3.9	107

#	Article	IF	CITATIONS
19	Common and Dissociable Neural Activity After Mindfulness-Based Stress Reduction and Relaxation Response Programs. Psychosomatic Medicine, 2018, 80, 439-451.	2.0	50
20	Frontostriatal and Dopamine Markers of Individual Differences in Reinforcement Learning: A Multi-modal Investigation. Cerebral Cortex, 2018, 28, 4281-4290.	2.9	38
21	Examining the Role of Repetitive Negative Thinking in Relations Between Positive and Negative Aspects of Self-compassion and Symptom Improvement During Intensive Treatment. Cognitive Therapy and Research, 2018, 42, 236-249.	1.9	26
22	2329 Associations between inflammatory markers and negative symptoms in individuals with schizophrenia: Converging evidence. Journal of Clinical and Translational Science, 2018, 2, 4-4.	0.6	0
23	Corticoinsular circuits encode subjective value expectation and violation for effortful goal-directed behavior. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E5233-E5242.	7.1	64
24	Social motivation in schizophrenia: The impact of oxytocin on vigor in the context of social and nonsocial reinforcement Journal of Abnormal Psychology, 2018, 127, 116-128.	1.9	20
25	Working hard for oneself or others: Effects of oxytocin on reward motivation in social anxiety disorder. Biological Psychology, 2017, 127, 157-162.	2.2	23
26	Association Between Interleukin-6 and Striatal Prediction-Error Signals Following Acute Stress in Healthy Female Participants. Biological Psychiatry, 2017, 82, 570-577.	1.3	58
27	Reward Processing, Neuroeconomics, and Psychopathology. Annual Review of Clinical Psychology, 2017, 13, 471-495.	12.3	109
28	Distinct Trajectories of Cortisol Response to Prolonged Acute Stress Are Linked to Affective Responses and Hippocampal Gray Matter Volume in Healthy Females. Journal of Neuroscience, 2017, 37, 7994-8002.	3.6	23
29	Willingness to Expend Effort Toward Reward and Extreme Ambitions in Bipolar I Disorder. Clinical Psychological Science, 2017, 5, 943-951.	4.0	9
30	Reduced Willingness to Expend Effort for Reward in Obesity: Link to Adherence to a 3â€Month Weight Loss Intervention. Obesity, 2017, 25, 1676-1681.	3.0	17
31	Vicarious Effort-Based Decision-Making in Autism Spectrum Disorders. Journal of Autism and Developmental Disorders, 2017, 47, 2992-3006.	2.7	26
32	Inflammation Effects on Motivation and Motor Activity: Role of Dopamine. Neuropsychopharmacology, 2017, 42, 216-241.	5.4	272
33	Lipopolysaccharide Alters Motivated Behavior in a Monetary Reward Task: a Randomized Trial. Neuropsychopharmacology, 2017, 42, 801-810.	5.4	96
34	Inflammatory markers are associated with decreased psychomotor speed in patients with major depressive disorder. Brain, Behavior, and Immunity, 2016, 56, 281-288.	4.1	102
35	Inefficient effort allocation and negative symptoms in individuals with schizophrenia. Schizophrenia Research, 2016, 170, 278-284.	2.0	99
36	Clashing Diagnostic Approaches: DSM-ICD Versus RDoC. Annual Review of Clinical Psychology, 2016, 12, 435-463.	12.3	189

#	Article	IF	CITATIONS
37	Effect of failure/success feedback and the moderating influence of personality on reward motivation. Cognition and Emotion, 2016, 30, 458-471.	2.0	7
38	Effect of Social Influence on Effort-Allocation for Monetary Rewards. PLoS ONE, 2015, 10, e0126656.	2.5	9
39	Reward processing dysfunction in major depression, bipolar disorder and schizophrenia. Current Opinion in Psychiatry, 2015, 28, 7-12.	6.3	567
40	Illness Progression, Recent Stress, and Morphometry of Hippocampal Subfields and Medial Prefrontal Cortex in Major Depression. Biological Psychiatry, 2015, 77, 285-294.	1.3	267
41	Impaired effort allocation in patients with schizophrenia. Schizophrenia Research, 2015, 161, 382-385.	2.0	141
42	Effort-Based Decision-Making Paradigms for Clinical Trials in Schizophrenia: Part 1â€"Psychometric Characteristics of 5 Paradigms. Schizophrenia Bulletin, 2015, 41, 1045-1054.	4.3	137
43	Motivation and effort in individuals with social anhedonia. Schizophrenia Research, 2015, 165, 70-75.	2.0	22
44	Perceived life stress exposure modulates reward-related medial prefrontal cortex responses to acute stress in depression. Journal of Affective Disorders, 2015, 180, 104-111.	4.1	38
45	From Blame to Punishment: Disrupting Prefrontal Cortex Activity Reveals Norm Enforcement Mechanisms. Neuron, 2015, 87, 1369-1380.	8.1	82
46	Trait Anticipatory Pleasure Predicts Effort Expenditure for Reward. PLoS ONE, 2015, 10, e0131357.	2.5	43
47	Effort, anhedonia, and function in schizophrenia: Reduced effort allocation predicts amotivation and functional impairment Journal of Abnormal Psychology, 2014, 123, 387-397.	1.9	251
48	Imaging the pathophysiology of major depressive disorder - from localist models to circuit-based analysis. Biology of Mood & Anxiety Disorders, 2014, 4, 5.	4.7	59
49	Corticolimbic gating of emotion-driven punishment. Nature Neuroscience, 2014, 17, 1270-1275.	14.8	80
50	Parsing Anhedonia. Current Directions in Psychological Science, 2013, 22, 244-249.	5.3	163
51	Perceived stress predicts altered reward and loss feedback processing in medial prefrontal cortex. Frontiers in Human Neuroscience, 2013, 7, 180.	2.0	54
52	Dopaminergic Mechanisms of Individual Differences in Human Effort-Based Decision-Making. Journal of Neuroscience, 2012, 32, 6170-6176.	3.6	319
53	Effort-based decision-making in major depressive disorder: A translational model of motivational anhedonia Journal of Abnormal Psychology, 2012, 121, 553-558.	1.9	517
54	Caffeine increases psychomotor performance on the effort expenditure for rewards task. Pharmacology Biochemistry and Behavior, 2012, 102, 526-531.	2.9	32

#	Article	IF	Citations
55	Adults with autism spectrum disorders exhibit decreased sensitivity to reward parameters when making effort-based decisions. Journal of Neurodevelopmental Disorders, 2012, 4, 13.	3.1	73
56	Amping Up Effort: Effects of <i>d</i> -Amphetamine on Human Effort-Based Decision-Making. Journal of Neuroscience, 2011, 31, 16597-16602.	3.6	219
57	On the Use and Misuse of Genomic and Neuroimaging Science in Forensic Psychiatry: Current Roles and Future Directions. Child and Adolescent Psychiatric Clinics of North America, 2011, 20, 533-546.	1.9	18
58	Reconsidering anhedonia in depression: Lessons from translational neuroscience. Neuroscience and Biobehavioral Reviews, 2011, 35, 537-555.	6.1	1,139
59	Mesolimbic dopamine reward system hypersensitivity in individuals with psychopathic traits. Nature Neuroscience, 2010, 13, 419-421.	14.8	401
60	Dopaminergic Network Differences in Human Impulsivity. Science, 2010, 329, 532-532.	12.6	506
61	Worth the â€~EEfRT'? The Effort Expenditure for Rewards Task as an Objective Measure of Motivation and Anhedonia. PLoS ONE, 2009, 4, e6598.	2.5	523
62	Early Adverse Events, HPA Activity and Rostral Anterior Cingulate Volume in MDD. PLoS ONE, 2009, 4, e4887.	2.5	108
63	Meditation experience is associated with increased cortical thickness. NeuroReport, 2005, 16, 1893-1897.	1.2	1,258