
Osamu Tomita

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5224850/publications.pdf Version: 2024-02-01

Οςλμι Τομιτλ

#	Article	IF	CITATIONS
1	Mono-transition-metal-substituted polyoxometalates as shuttle redox mediator for Z-scheme water splitting under visible light. Sustainable Energy and Fuels, 2022, 6, 664-673.	4.9	9
2	Cobalt hexacyanoferrate as an effective cocatalyst boosting water oxidation on oxynitride TaON photocatalyst under visible light. Journal of Photochemistry and Photobiology A: Chemistry, 2022, 426, 113753.	3.9	4
3	Manipulation of charge carrier flow in Bi ₄ NbO ₈ Cl nanoplate photocatalyst with metal loading. Chemical Science, 2022, 13, 3118-3128.	7.4	17
4	Two-Dimensional Metal–Organic Framework Acts as a Hydrogen Evolution Cocatalyst for Overall Photocatalytic Water Splitting. ACS Catalysis, 2022, 12, 3881-3889.	11.2	32
5	Improved water oxidation activity of a Sillén SrBi ₃ O ₄ Cl ₃ photocatalyst by flux method with an appropriate binary-component molten salt. Sustainable Energy and Fuels, 2022, 6, 3263-3270.	4.9	1
6	Polyoxocationic antimony oxide cluster with acidic protons. Science Advances, 2022, 8, .	10.3	5
7	Visible-Light-Responsive Oxyhalide PbBiO2Cl Photoelectrode: On-Site Flux Synthesis on a Fluorine-Doped Tin Oxide Electrode. ACS Applied Materials & Interfaces, 2021, 13, 5176-5183.	8.0	2
8	A new lead-free Sillén–Aurivillius oxychloride Bi5SrTi3O14Cl with triple-perovskite layers for photocatalytic water splitting under visible light. Journal of Photochemistry and Photobiology A: Chemistry, 2021, 408, 113095.	3.9	8
9	Synthesis, band structure and photocatalytic properties of SillA©na€ Aurivillius oxychlorides BaBi ₅ Ti ₃ O ₁₄ Cl, Ba ₂ Bi ₅ Ti ₄ O ₁₇ Cl and Ba ₃ Bi ₅ Ti ₅ Cl and	10.3	22
10	Layered Perovskite Oxylodide with Narrow Band Gap and Long Lifetime Carriers for Water Splitting Photocatalysis. Journal of the American Chemical Society, 2021, 143, 8446-8453.	13.7	46
11	Earth-abundant iron(<scp>iii</scp>) species serves as a cocatalyst boosting the multielectron reduction of IO ₃ ^{â^} /I ^{â^²} redox shuttle in Z-scheme photocatalytic water splitting. Journal of Materials Chemistry A, 2021, 9, 11718-11725.	10.3	8
12	Controlling the carrier density in niobium oxynitride BaNbO ₂ N <i>via</i> cation doping for efficient photoelectrochemical water splitting under visible light. Sustainable Energy and Fuels, 2021, 5, 6181-6188.	4.9	6
13	PbBi ₃ O ₄ X ₃ (X = Cl, Br) with Single/Double Halogen Layers as a Photocatalyst for Visible-Light-Driven Water Splitting: Impact of a Halogen Layer on the Band Structure and Stability. Chemistry of Materials, 2021, 33, 9580-9587.	6.7	11
14	Triple-layered Sillén–Aurivillius Perovskite Oxychloride Bi ₅ PbTi ₃ O ₁₄ Cl as a Visible-light-responsive Photocatalyst for Water Splitting. Chemistry Letters, 2020, 49, 978-981.	1.3	11
15	Flux Synthesis of Layered Oxyhalide Bi ₄ NbO ₈ Cl Photocatalyst for Efficient <i>Z</i> -Scheme Water Splitting Under Visible Light. ACS Applied Materials & Interfaces, 2019, 11, 5642-5650.	8.0	89
16	Effective strategy for enhancing Z-scheme water splitting with the IO ₃ ^{â^²} /I ^{â^²} redox mediator by using a visible light responsive TaON photocatalyst co-loaded with independently optimized two different cocatalysts. Sustainable Energy and Fuels, 2019, 3, 1501-1508.	4.9	15
17	Application of carbon microfiber felts as three-dimensional conductive substrate for efficient photoanodes of tungsten(VI) oxide. Journal of Photochemistry and Photobiology A: Chemistry, 2019, 375, 54-63.	3.9	6
18	Mimicking Natural Photosynthesis: Solar to Renewable H ₂ Fuel Synthesis by Z-Scheme Water Splitting Systems. Chemical Reviews, 2018, 118, 5201-5241.	47.7	748

#	Article	IF	CITATIONS
19	Molybdenum-substituted polyoxometalate as stable shuttle redox mediator for visible light driven Z-scheme water splitting system. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 356, 347-354.	3.9	20
20	The first example of an oxide semiconductor photocatalyst consisting of a heptavalent cation: visible-light-induced water oxidation on M ₃ ReO ₈ . Journal of Materials Chemistry A, 2018, 6, 1991-1994.	10.3	5
21	Strong hybridization between Bi-6s and O-2p orbitals in Sillén–Aurivillius perovskite Bi ₄ MO ₈ X (M = Nb, Ta; X = Cl, Br), visible light photocatalysts enabling stable water oxidation. Journal of Materials Chemistry A, 2018, 6, 3100-3107.	10.3	106
22	Improved water oxidation under visible light on oxyhalide Bi ₄ MO ₈ X (M = Nb,) Tj ETQq 2018, 2, 1474-1480.	0 0 0 rgBT 4.9	/Overlock 10 33
23	Improved visible-light activity of nitrogen-doped layered niobate photocatalysts by NH3-nitridation with KCl flux. Applied Catalysis B: Environmental, 2018, 232, 49-54.	20.2	19
24	Enhanced H ₂ Evolution on ZnIn ₂ S ₄ Photocatalyst under Visible Light by Surface Modification with Metal Cyanoferrates. Chemistry Letters, 2018, 47, 941-944.	1.3	15
25	Lead Bismuth Oxyhalides PbBiO ₂ X (X = Cl, Br) as Visible-Light-Responsive Photocatalysts for Water Oxidation: Role of Lone-Pair Electrons in Valence Band Engineering. Chemistry of Materials, 2018, 30, 5862-5869.	6.7	82
26	Improved Activity of Hydrothermally-prepared WO ₃ Photocatalysts by Sodium Salt Additives. Chemistry Letters, 2018, 47, 985-988.	1.3	5
27	Sillén–Aurivillius-related Oxychloride Bi ₆ NbWO ₁₄ Cl as a Stable O ₂ -evolving Photocatalyst in Z-scheme Water Splitting under Visible Light. Chemistry Letters, 2017, 46, 583-586.	1.3	28
28	Enhanced oxygen evolution on visible light responsive TaON photocatalysts co-loaded with highly active Ru species for IO ₃ ^{â^'} reduction and Co species for water oxidation. Sustainable Energy and Fuels, 2017, 1, 748-754.	4.9	15
29	Tungstic acids H ₂ WO ₄ and H ₄ WO ₅ as stable photocatalysts for water oxidation under visible light. Journal of Materials Chemistry A, 2017, 5, 10280-10288.	10.3	33
30	Surface-modified metal sulfides as stable H ₂ -evolving photocatalysts in Z-scheme water splitting with a [Fe(CN) ₆] ^{3â^'/4â^'} redox mediator under visible-light irradiation. Sustainable Energy and Fuels, 2017, 1, 1065-1073.	4.9	41
31	Highly Dispersed RuO ₂ Hydrates Prepared via Simple Adsorption as Efficient Cocatalysts for Visible-Light-Driven Z-Scheme Water Splitting with an IO ₃ [–] /I [–] Redox Mediator. ACS Catalysis, 2017, 7, 4336-4343.	11.2	42
32	Fabrication of CuInS ₂ photocathodes on carbon microfiber felt by arc plasma deposition for efficient water splitting under visible light. Sustainable Energy and Fuels, 2017, 1, 699-709.	4.9	10
33	Improved Photocatalytic Water Oxidation with Fe ³⁺ /Fe ²⁺ Redox on Rectangular-shaped WO ₃ Particles with Specifically Exposed Crystal Faces via Hydrothermal Synthesis. Chemistry Letters, 2017, 46, 221-224.	1.3	21
34	Porous TaON Photoanodes Loaded with Cobalt-Based Cocatalysts for Efficient and Stable Water Oxidation Under Visible Light. Topics in Catalysis, 2016, 59, 740-749.	2.8	12
35	Design of nitrogen-doped layered tantalates for non-sacrificial and selective hydrogen evolution from water under visible light. Journal of Materials Chemistry A, 2016, 4, 14444-14452.	10.3	29
36	Manganese‣ubstituted Polyoxometalate as an Effective Shuttle Redox Mediator in Z‣cheme Water Splitting under Visible Light. ChemSusChem, 2016, 9, 2201-2208.	6.8	58

Оѕами Томіта

#	Article	IF	CITATIONS
37	Partial Oxidation of Alcohols on Visible-Light-Responsive WO ₃ Photocatalysts Loaded with Palladium Oxide Cocatalyst. ACS Catalysis, 2016, 6, 1134-1144.	11.2	134
38	Solvothermal Synthesis of Ca2Nb2O7 Fine Particles and Their High Activity for Photocatalytic Water Splitting into H2 and O2 under UV Light Irradiation. Chemistry Letters, 2015, 44, 1001-1003.	1.3	14
39	Z-scheme Water Splitting into H2 and O2 Using Tungstic Acid as an Oxygen-evolving Photocatalyst under Visible Light Irradiation. Chemistry Letters, 2015, 44, 1134-1136.	1.3	17
40	Two-step photocatalytic water splitting into H ₂ and O ₂ using layered metal oxide KCa ₂ Nb ₃ O ₁₀ and its derivatives as O ₂ -evolving photocatalysts with IO ₃ ^{â^*} /I ^{â^*} or Fe ³⁺ /Fe ²⁺ redox mediator. Catalysis Science and Technology, 2015, 5, 2640-2648.	4.1	46
41	Fabrication of cation-doped BaTaO ₂ N photoanodes for efficient photoelectrochemical water splitting under visible light irradiation. APL Materials, 2015, 3, 104418.	5.1	41
42	Highly selective phenol production from benzene on a platinum-loaded tungsten oxide photocatalyst with water and molecular oxygen: selective oxidation of water by holes for generating hydroxyl radical as the predominant source of the hydroxyl group. Catalysis Science and Technology, 2014, 4, 3850-3860.	4.1	72