
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5223986/publications.pdf Version: 2024-02-01

CHDIS | MCRAIN

#	Article	IF	CITATIONS
1	Glutamate Receptor Ion Channels: Structure, Regulation, and Function. Pharmacological Reviews, 2010, 62, 405-496.	16.0	2,973
2	The Role of the GluR2 Subunit in AMPA Receptor Function and Synaptic Plasticity. Neuron, 2007, 54, 859-871.	8.1	940
3	N-methyl-D-aspartic acid receptor structure and function. Physiological Reviews, 1994, 74, 723-760.	28.8	896
4	New insights into the classification and nomenclature of cortical GABAergic interneurons. Nature Reviews Neuroscience, 2013, 14, 202-216.	10.2	707
5	Kv3 channels: voltage-gated K+ channels designed for high-frequency repetitive firing. Trends in Neurosciences, 2001, 24, 517-526.	8.6	691
6	Hippocampal GABAergic Inhibitory Interneurons. Physiological Reviews, 2017, 97, 1619-1747.	28.8	601
7	Interneurons unbound. Nature Reviews Neuroscience, 2001, 2, 11-23.	10.2	585
8	Graded reduction of Pafah1b1 (Lis1) activity results in neuronal migration defects and early embryonic lethality. Nature Genetics, 1998, 19, 333-339.	21.4	554
9	The hyperpolarizationâ€activated current (Ih) and its contribution to pacemaker activity in rat CA1 hippocampal stratum oriensâ€alveus interneurones Journal of Physiology, 1996, 497, 119-130.	2.9	422
10	Differential regulation at functionally divergent release sites along a common axon. Current Opinion in Neurobiology, 2007, 17, 366-373.	4.2	305
11	Activation of metabotropic glutamate receptors differentially affects two classes of hippocampal interneurons and potentiates excitatory synaptic transmission. Journal of Neuroscience, 1994, 14, 4433-4445.	3.6	281
12	A Blueprint for the Spatiotemporal Origins of Mouse Hippocampal Interneuron Diversity. Journal of Neuroscience, 2011, 31, 10948-10970.	3.6	267
13	Regional variation of extracellular space in the hippocampus. Science, 1990, 249, 674-677.	12.6	258
14	Narp regulates homeostatic scaling of excitatory synapses on parvalbumin-expressing interneurons. Nature Neuroscience, 2010, 13, 1090-1097.	14.8	243
15	Differential Mechanisms of Transmission at Three Types of Mossy Fiber Synapse. Journal of Neuroscience, 2000, 20, 8279-8289.	3.6	238
16	Structure, Function, and Pharmacology of Glutamate Receptor Ion Channels. Pharmacological Reviews, 2021, 73, 1469-1658.	16.0	237
17	Afferent-specific innervation of two distinct AMPA receptor subtypes on single hippocampal interneurons. Nature Neuroscience, 1998, 1, 572-578.	14.8	227
18	Developmental expression and functional characterization of the potassium-channel subunit Kv3.1b in parvalbumin-containing interneurons of the rat hippocampus. Journal of Neuroscience, 1996, 16, 506-518.	3.6	217

#	Article	IF	CITATIONS
19	Distinct Roles for the Kainate Receptor Subunits GluR5 and GluR6 in Kainate-Induced Hippocampal Gamma Oscillations. Journal of Neuroscience, 2004, 24, 9658-9668.	3.6	215
20	Target-Specific Expression of Presynaptic Mossy Fiber Plasticity. Science, 1998, 279, 1368-1371.	12.6	207
21	Selective Expression of ErbB4 in Interneurons, But Not Pyramidal Cells, of the Rodent Hippocampus. Journal of Neuroscience, 2009, 29, 12255-12264.	3.6	200
22	Frequencyâ€dependent regulation of rat hippocampal somatoâ€dendritic excitability by the K + channel subunit Kv2.1. Journal of Physiology, 2000, 522, 19-31.	2.9	193
23	Heterogeneity of synaptic glutamate receptors on CA3 stratum radiatum interneurones of rat hippocampus Journal of Physiology, 1993, 462, 373-392.	2.9	192
24	Interneuron Diversity series: Containing the detonation – feedforward inhibition in the CA3 hippocampus. Trends in Neurosciences, 2003, 26, 631-640.	8.6	187
25	Somatodendritic Kv7/KCNQ/M Channels Control Interspike Interval in Hippocampal Interneurons. Journal of Neuroscience, 2006, 26, 12325-12338.	3.6	175
26	Potassium conductances underlying repolarization and afterâ€hyperpolarization in rat CA1 hippocampal interneurones Journal of Physiology, 1995, 488, 661-672.	2.9	171
27	Passive propagation of LTD to stratum oriens-alveus inhibitory neurons modulates the temporoammonic input to the hippocampal CA1 region. Neuron, 1995, 15, 137-145.	8.1	167
28	mGluR7 Is a Metaplastic Switch Controlling Bidirectional Plasticity of Feedforward Inhibition. Neuron, 2005, 46, 89-102.	8.1	166
29	Pentraxins Coordinate Excitatory Synapse Maturation and Circuit Integration of Parvalbumin Interneurons. Neuron, 2015, 85, 1257-1272.	8.1	154
30	Common Origins of Hippocampal Ivy and Nitric Oxide Synthase Expressing Neurogliaform Cells. Journal of Neuroscience, 2010, 30, 2165-2176.	3.6	153
31	NPTX2 and cognitive dysfunction in Alzheimer's Disease. ELife, 2017, 6, .	6.0	146
32	Asynchronous Transmitter Release from Cholecystokinin-Containing Inhibitory Interneurons Is Widespread and Target-Cell Independent. Journal of Neuroscience, 2009, 29, 11112-11122.	3.6	138
33	Distinct NMDA Receptors Provide Differential Modes of Transmission at Mossy Fiber-Interneuron Synapses. Neuron, 2002, 33, 921-933.	8.1	137
34	Viral manipulation of functionally distinct interneurons in mice, non-human primates and humans. Nature Neuroscience, 2020, 23, 1629-1636.	14.8	133
35	Hippocampal Abnormalities and Enhanced Excitability in a Murine Model of Human Lissencephaly. Journal of Neuroscience, 2000, 20, 2439-2450.	3.6	132
36	Long-Term Potentiation in Distinct Subtypes of Hippocampal Nonpyramidal Neurons. Journal of Neuroscience, 1996, 16, 5334-5343.	3.6	126

CHRIS J MCBAIN

#	Article	IF	CITATIONS
37	Structural requirements for activation of the glycine coagonist site of N-methyl-D-aspartate receptors expressed in Xenopus oocytes. Molecular Pharmacology, 1989, 36, 556-65.	2.3	125
38	GABAergic Input onto CA3 Hippocampal Interneurons Remains Shunting throughout Development. Journal of Neuroscience, 2006, 26, 11720-11725.	3.6	123
39	Neurogliaform cells in cortical circuits. Nature Reviews Neuroscience, 2015, 16, 458-468.	10.2	119
40	Quantal transmission at mossy fibre targets in the CA3 region of the rat hippocampus. Journal of Physiology, 2004, 554, 175-193.	2.9	109
41	Optimizing Nervous System-Specific Gene Targeting with Cre Driver Lines: Prevalence of Germline Recombination and Influencing Factors. Neuron, 2020, 106, 37-65.e5.	8.1	109
42	H2 histamine receptor-phosphorylation of Kv3.2 modulates interneuron fast spiking. Nature Neuroscience, 2000, 3, 791-798.	14.8	105
43	Compartmentalized Ca2+ Channel Regulation at Divergent Mossy-Fiber Release Sites Underlies Target Cell-Dependent Plasticity. Neuron, 2006, 52, 497-510.	8.1	105
44	GABA B receptor modulation of excitatory and inhibitory synaptic transmission onto rat CA3 hippocampal interneurons. Journal of Physiology, 2003, 546, 439-453.	2.9	104
45	Dual origins of functionally distinct O-LM interneurons revealed by differential 5-HT3AR expression. Nature Neuroscience, 2013, 16, 1598-1607.	14.8	104
46	Cell type-specific dependence of muscarinic signalling in mouse hippocampal stratum oriens interneurones. Journal of Physiology, 2006, 570, 595-610.	2.9	103
47	Glutamatergic synapses onto hippocampal interneurons: precision timing without lasting plasticity. Trends in Neurosciences, 1999, 22, 228-235.	8.6	100
48	Developmental origin dictates interneuron AMPA and NMDA receptor subunit composition and plasticity. Nature Neuroscience, 2013, 16, 1032-1041.	14.8	92
49	Developmental Expression of Ca ²⁺ -Permeable AMPA Receptors Underlies Depolarization-Induced Long-Term Depression at Mossy Fiber–CA3 Pyramid Synapses. Journal of Neuroscience, 2007, 27, 11651-11662.	3.6	91
50	M3 Muscarinic Acetylcholine Receptor Expression Confers Differential Cholinergic Modulation to Neurochemically Distinct Hippocampal Basket Cell Subtypes. Journal of Neuroscience, 2010, 30, 6011-6024.	3.6	91
51	GluN2D-Containing N-methyl-d-Aspartate Receptors Mediate Synaptic Transmission in Hippocampal Interneurons and Regulate Interneuron Activity. Molecular Pharmacology, 2016, 90, 689-702.	2.3	84
52	Two Loci of Expression for Long-Term Depression at Hippocampal Mossy Fiber-Interneuron Synapses. Journal of Neuroscience, 2004, 24, 2112-2121.	3.6	80
53	Neto1 Is an Auxiliary Subunit of Native Synaptic Kainate Receptors. Journal of Neuroscience, 2011, 31, 10009-10018.	3.6	78
54	Targetâ€specific expression of pre―and postsynaptic mechanisms. Journal of Physiology, 2000, 525, 41-51.	2.9	77

#	Article	IF	CITATIONS
55	Diverse roles for ionotropic glutamate receptors on inhibitory interneurons in developing and adult brain. Journal of Physiology, 2016, 594, 5471-5490.	2.9	77
56	Muscarinic receptor activation tunes mouse stratum oriens interneurones to amplify spike reliability. Journal of Physiology, 2006, 571, 555-562.	2.9	71
57	Chapter 13 Differential mechanisms of transmission and plasticity at mossy fiber synapses. Progress in Brain Research, 2008, 169, 225-240.	1.4	69
58	Shisa7 is a GABA _A receptor auxiliary subunit controlling benzodiazepine actions. Science, 2019, 366, 246-250.	12.6	65
59	Voltageâ€gated potassium currents in stratum oriensâ€alveus inhibitory neurones of the rat CA1 hippocampus Journal of Physiology, 1995, 488, 647-660.	2.9	64
60	Presynaptic plasticity: targeted control of inhibitory networks. Current Opinion in Neurobiology, 2009, 19, 254-262.	4.2	64
61	Molecular Dissection of Neuroligin 2 and Slitrk3 Reveals an Essential Framework for GABAergic Synapse Development. Neuron, 2017, 96, 808-826.e8.	8.1	64
62	Developmental expression of potassium-channel subunit Kv3.2 within subpopulations of mouse hippocampal inhibitory interneurons. Hippocampus, 2002, 12, 137-148.	1.9	63
63	State-Dependent cAMP Sensitivity of Presynaptic Function Underlies Metaplasticity in a Hippocampal Feedforward Inhibitory Circuit. Neuron, 2008, 60, 980-987.	8.1	63
64	Neurogliaform cells dynamically regulate somatosensory integration via synapse-specific modulation. Nature Neuroscience, 2013, 16, 13-15.	14.8	60
65	Persistent inhibitory circuit defects and disrupted social behaviour following in utero exogenous cannabinoid exposure. Molecular Psychiatry, 2017, 22, 56-67.	7.9	59
66	Control of CA3 Output by Feedforward Inhibition Despite Developmental Changes in the Excitation–Inhibition Balance. Journal of Neuroscience, 2010, 30, 15628-15637.	3.6	58
67	Snap-25 is polarized to axons and abundant along the axolemma: an immunogold study of intact neurons. Journal of Neurocytology, 2000, 29, 67-77.	1.5	57
68	Neto Auxiliary Protein Interactions Regulate Kainate and NMDA Receptor Subunit Localization at Mossy Fiber–CA3 Pyramidal Cell Synapses. Journal of Neuroscience, 2014, 34, 622-628.	3.6	55
69	Distinct roles of GABA _{B1a} ―and GABA _{B1b} â€containing GABA _B receptors in spontaneous and evoked termination of persistent cortical activity. Journal of Physiology, 2013, 591, 835-843.	2.9	52
70	The emerging role of GABAB receptors as regulators of network dynamics: fast actions from a â€~slow' receptor?. Current Opinion in Neurobiology, 2014, 26, 15-21.	4.2	52
71	Hippocampal inhibitory neuron activity in the elevated potassium model of epilepsy. Journal of Neurophysiology, 1994, 72, 2853-2863.	1.8	51
72	Depolarization-Induced Long-Term Depression at Hippocampal Mossy Fiber-CA3 Pyramidal Neuron Synapses. Journal of Neuroscience, 2003, 23, 9786-9795.	3.6	51

CHRIS J MCBAIN

#	Article	IF	CITATIONS
73	Targetâ€cellâ€dependent plasticity within the mossy fibre–CA3 circuit reveals compartmentalized regulation of presynaptic function at divergent release sites. Journal of Physiology, 2008, 586, 1495-1502.	2.9	51
74	Cholinergic modulation amplifies the intrinsic oscillatory properties of CA1 hippocampal cholecystokininâ€positive interneurons. Journal of Physiology, 2011, 589, 609-627.	2.9	51
75	Neocortical Projection Neurons Instruct Inhibitory Interneuron Circuit Development in a Lineage-Dependent Manner. Neuron, 2019, 102, 960-975.e6.	8.1	51
76	Fast Gamma Oscillations Are Generated Intrinsically in CA1 without the Involvement of Fast-Spiking Basket Cells. Journal of Neuroscience, 2015, 35, 3616-3624.	3.6	50
77	Afferent specific role of NMDA receptors for the circuit integration of hippocampal neurogliaform cells. Nature Communications, 2017, 8, 152.	12.8	45
78	Behavioral state-dependent modulation of distinct interneuron subtypes and consequences for circuit function. Current Opinion in Neurobiology, 2014, 29, 118-125.	4.2	44
79	CNQX increases spontaneous inhibitory input to CA3 pyramidal neurones in neonatal rat hippocampal slices. Brain Research, 1992, 592, 255-260.	2.2	42
80	Neto Auxiliary Subunits Regulate Interneuron Somatodendritic and Presynaptic Kainate Receptors to Control Network Inhibition. Cell Reports, 2017, 20, 2156-2168.	6.4	41
81	Presynaptic Kainate Receptor Activation Preserves Asynchronous GABA Release Despite the Reduction in Synchronous Release from Hippocampal Cholecystokinin Interneurons. Journal of Neuroscience, 2010, 30, 11202-11209.	3.6	39
82	TASK-Like Conductances Are Present within Hippocampal CA1 Stratum Oriens Interneuron Subpopulations. Journal of Neuroscience, 2006, 26, 7362-7367.	3.6	37
83	5â€Hydroxytryptamine _{1A} receptorâ€activation hyperpolarizes pyramidal cells and suppresses hippocampal gamma oscillations via Kir3 channel activation. Journal of Physiology, 2014, 592, 4187-4199.	2.9	37
84	Interneurons Differentially Contribute to Spontaneous Network Activity in the Developing Hippocampus Dependent on Their Embryonic Lineage. Journal of Neuroscience, 2016, 36, 2646-2662.	3.6	37
85	Hippocampal inhibitory neuron activity in the elevated potassium model of epilepsy. Journal of Neurophysiology, 1995, 73, 2853-2863.	1.8	36
86	Activation of Kinetically Distinct Synaptic Conductances on Inhibitory Interneurons by Electrotonically Overlapping Afferents. Neuron, 2002, 35, 161-171.	8.1	35
87	Activity-dependent tuning of intrinsic excitability in mouse and human neurogliaform cells. ELife, 2020, 9, .	6.0	29
88	Life-long epigenetic programming of cortical architecture by maternal â€~Western' diet during pregnancy. Molecular Psychiatry, 2020, 25, 22-36.	7.9	28
89	Paradoxical network excitation by glutamate release from VCluT3+ GABAergic interneurons. ELife, 2020, 9, .	6.0	25
90	Dopamine suppresses persistent network activity via D ₁ â€like dopamine receptors in rat medial entorhinal cortex. European Journal of Neuroscience, 2013, 37, 1242-1247.	2.6	21

#	Article	IF	CITATIONS
91	Two temporally overlapping "delayed-rectifiers" determine the voltage-dependent potassium current phenotype in cultured hippocampal interneurons. Journal of Neurophysiology, 1996, 76, 1477-1490.	1.8	20
92	Synaptic plasticity in hippocampal interneurons? A commentary. Canadian Journal of Physiology and Pharmacology, 1997, 75, 488-494.	1.4	20
93	Functional Differentiation of Cholecystokinin-Containing Interneurons Destined for the Cerebral Cortex. Cerebral Cortex, 2017, 27, bhw094.	2.9	19
94	A biomarker-authenticated model of schizophrenia implicating NPTX2 loss of function. Science Advances, 2021, 7, eabf6935.	10.3	17
95	Emergence of non-canonical parvalbumin-containing interneurons in hippocampus of a murine model of type I lissencephaly. ELife, 2020, 9, .	6.0	13
96	An update on cholinergic regulation of cholecystokininâ€expressing basket cells. Journal of Physiology, 2012, 590, 695-702.	2.9	10
97	Navigating the circuitry of the brain's GPS system: Future challenges for neurophysiologists. Hippocampus, 2015, 25, 736-743.	1.9	10
98	The Role of AMPARs in the Maturation and Integration of Caudal Ganglionic Eminence-Derived Interneurons into Developing Hippocampal Microcircuits. Scientific Reports, 2019, 9, 5435.	3.3	9
99	NMDARs Drive the Expression of Neuropsychiatric Disorder Risk Genes Within GABAergic Interneuron Subtypes in the Juvenile Brain. Frontiers in Molecular Neuroscience, 2021, 14, 712609.	2.9	9
100	Synaptic plasticity in hippocampal interneurons? A commentary. Canadian Journal of Physiology and Pharmacology, 1997, 75, 488-94.	1.4	9
101	Loss of habenular Prkar2a reduces hedonic eating and increases exercise motivation. JCl Insight, 2020, 5, .	5.0	8
102	AMPA receptor deletion in developing MGE-derived hippocampal interneurons causes a redistribution of excitatory synapses and attenuates postnatal network oscillatory activity. Scientific Reports, 2020, 10, 1333.	3.3	7
103	A versatile viral toolkit for functional discovery in the nervous system. Cell Reports Methods, 2022, , 100225.	2.9	6
104	The Hyperpolarization-Activated Cation Current I h : The Missing Link Connecting Cannabinoids to Cognition. Neuron, 2016, 89, 889-891.	8.1	5
105	Intrinsic electrophysiological properties predict variability in morphology and connectivity among striatal Parvalbumin-expressing Pthlh-cells. Scientific Reports, 2020, 10, 15680.	3.3	5
106	Translatome Analyses Using Conditional Ribosomal Tagging in GABAergic Interneurons and Other Sparse Cell Types. Current Protocols in Neuroscience, 2020, 92, e93.	2.6	5
107	Resilient Hippocampal Gamma Rhythmogenesis and Parvalbumin-Expressing Interneuron Function Before and After Plaque Burden in 5xFAD Alzheimer's Disease Model. Frontiers in Synaptic Neuroscience, 2022, 14, .	2.5	5
108	New directions in synaptic and network plasticity – a move away from NMDA receptor mediated plasticity. Journal of Physiology, 2008, 586, 1473-1474.	2.9	4

CHRIS J MCBAIN

#	Article	IF	CITATIONS
109	Aberrant sorting of hippocampal complex pyramidal cells in type I lissencephaly alters topological innervation. ELife, 2020, 9, .	6.0	4
110	GABAergic Signaling in Health and Disease. Neuropharmacology, 2015, 88, 1.	4.1	2
111	Timing isn't everything: opposing roles for perisomatic inhibition. Neuron, 2021, 109, 911-913.	8.1	2
112	Decoding the Neuronal Tower of Babel. Science, 2012, 338, 482-483.	12.6	1
113	Transient compartmentalization of interneuron dendrites. Journal of Physiology, 2003, 551, 1-1.	2.9	1
114	The GluN2A Subunit of the NMDA Receptor Modulates the Rate of Functional Maturation in Parvalbuminâ€positive Interneurons. FASEB Journal, 2022, 36, .	0.5	1
115	Cortical inhibitory neuron basket cells: from circuit function to disruption. Journal of Physiology, 2012, 590, 667-667.	2.9	0
116	Exploring the Interneuron Canopy Atop the â€~Impenetrable Jungle'. Trends in Neurosciences, 2019, 42, 237-239.	8.6	0
117	Vesicle Pools of Memory at Mossy Fiber Synapses. Neuron, 2020, 107, 395-396.	8.1	0